793 research outputs found

    Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase

    Get PDF
    AbstractMethionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR

    Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems

    Full text link
    Most current methods for identifying coherent structures in spatially-extended systems rely on prior information about the form which those structures take. Here we present two new approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages, and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively), and provide complementary information.Comment: 16 pages, 21 figures. Figures considerably compressed to fit arxiv requirements; write first author for higher-resolution version

    ICON 2019: International Scientific Tendinopathy Symposium Consensus: Clinical Terminology

    Get PDF
    © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.Background Persistent tendon pain that impairs function has inconsistent medical terms that can influence choice of treatment.1 When a person is told they have tendinopathy by clinician A or tendinitis by clinician B, they might feel confused or be alarmed at receiving what they might perceive as two different diagnoses. This may lead to loss of confidence in their health professional and likely adds to uncertainty if they were to search for information about their condition. Clear and uniform terminology also assists inter-professional communication. Inconsistency in terminology for painful tendon disorders is a problem at numerous anatomical sites. Historically, the term ‘tendinitis’ was first used to describe tendon pain, thickening and impaired function (online supplementary figure S1). The term ‘tendinosis’ has also been used in a small number of publications, some of which were very influential.2 3 Subsequently, ‘tendinopathy’ emerged as the most common term for persistent tendon pain.4 5 To our knowledge, experts (clinicians and researchers) or patients have never engaged in a formal process to discuss the terminology we use. We believe that health professionals have not yet agreed on the appropriate terminology for painful tendon conditions.Peer reviewedFinal Accepted Versio

    Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years

    Get PDF
    Maturation of the human fetal brain should follow precisely scheduled structural growth and folding of the cerebral cortex for optimal postnatal function1 . We present a normative digital atlas of fetal brain maturation based on a prospective international cohort of healthy pregnant women2 , selected using World Health Organization recommendations for growth standards3 . Their fetuses were accurately dated in the first trimester, with satisfactory growth and neurodevelopment from early pregnancy to 2 years of age4,5 . The atlas was produced using 1,059 optimal quality, three dimensional ultrasound brain volumes from 899 of the fetuses and an automated analysis pipeline6–8 . The atlas corresponds structurally to published magnetic resonance images9 , but with finer anatomical details in deep grey matter. The between study site variability represented less than 8.0% of the total variance of all brain measures, supporting pooling data from the eight study sites to produce patterns of normative maturation. We have thereby generated an average representation of each cerebral hemisphere between 14 and 31 weeks’ gestation with quantification of intracranial volume variability and growth patterns. Emergent asymmetries were detectable from as early as 14 weeks, with peak asymmetries in regions associated with language development and functional lateralization between 20 and 26 weeks’ gestation. These patterns were validated in 1,487 three-dimensional brain volumes from 1,295 different fetuses in the same cohort. We provide a unique spatiotemporal benchmark of fetal brain maturation from a large cohort with normative postnatal growth and neurodevelopment

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.

    Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon

    Get PDF
    Net proton and negative hadron spectra for central \PbPb collisions at 158 GeV per nucleon at the CERN SPS were measured and compared to spectra from lighter systems. Net baryon distributions were derived from those of net protons, utilizing model calculations of isospin contributions as well as data and model calculations of strange baryon distributions. Stopping (rapidity shift with respect to the beam) and mean transverse momentum \meanpt of net baryons increase with system size. The rapidity density of negative hadrons scales with the number of participant nucleons for nuclear collisions, whereas their \meanpt is independent of system size. The \meanpt dependence upon particle mass and system size is consistent with larger transverse flow velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures. Typos corrected, some paragraphs expanded in response to referee comments, to better explain details of analysi

    Event-by-event fluctuations of the kaon to pion ratio in central Pb+Pb collisions at 158 GeV per Nucleon

    Get PDF
    We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine non-statistical fluctuations, perhaps related to a first or second order QCD phase transition. Such fluctuations are shown to be very small.Comment: 4 pages, 2 figure
    corecore