1,434 research outputs found

    Where are macrophage-tropic viruses?

    Get PDF
    Eradication strategies must consider all cellular sources of virus. During the course of infection, HIV-1 can evolve to acquire new cell tropism. We have examined virus in blood and cerebral spinal fluid to identify virus capable of infecting macrophages

    Internal Motility in Stiffening Actin-Myosin Networks

    Full text link
    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.Comment: 4 pages, 3 figure

    Nonlinear Relaxation Dynamics in Elastic Networks and Design Principles of Molecular Machines

    Full text link
    Analyzing nonlinear conformational relaxation dynamics in elastic networks corresponding to two classical motor proteins, we find that they respond by well-defined internal mechanical motions to various initial deformations and that these motions are robust against external perturbations. We show that this behavior is not characteristic for random elastic networks. However, special network architectures with such properties can be designed by evolutionary optimization methods. Using them, an example of an artificial elastic network, operating as a cyclic machine powered by ligand binding, is constructed.Comment: 12 pages, 9 figure

    Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration

    Get PDF
    BACKGROUND: Cortical myosin-II filaments in Dictyostelium discoideum display enrichment in the posterior of the cell during cell migration and in the cleavage furrow during cytokinesis. Filament assembly in turn is regulated by phosphorylation in the tail region of the myosin heavy chain (MHC). Early studies have revealed one enzyme, MHCK-A, which participates in filament assembly control, and two other structurally related enzymes, MHCK-B and -C. In this report we evaluate the biochemical properties of MHCK-C, and using fluorescence microscopy in living cells we examine the localization of GFP-labeled MHCK-A, -B, and -C in relation to GFP-myosin-II localization. RESULTS: Biochemical analysis indicates that MHCK-C can phosphorylate MHC with concomitant disassembly of myosin II filaments. In living cells, GFP-MHCK-A displayed frequent enrichment in the anterior of polarized migrating cells, and in the polar region but not the furrow during cytokinesis. GFP-MHCK-B generally displayed a homogeneous distribution. In migrating cells GFP-MHCK-C displayed posterior enrichment similar to that of myosin II, but did not localize with myosin II to the furrow during the early stage of cytokinesis. At the late stage of cytokinesis, GFP-MHCK-C became strongly enriched in the cleavage furrow, remaining there through completion of division. CONCLUSION: MHCK-A, -B, and -C display distinct cellular localization patterns suggesting different cellular functions and regulation for each MHCK isoform. The strong localization of MHCK-C to the cleavage furrow in the late stages of cell division may reflect a mechanism by which the cell regulates the progressive removal of myosin II as furrowing progresses

    Nucleation of polar actin filament assembly by a positively charged surface.

    Full text link

    Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: results of a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minocycline is a tetracycline antibiotic that has been shown to attenuate central nervous system (CNS) lentivirus infection, immune activation, and brain injury in model systems. To initiate assessment of minocycline as an adjuvant therapy in human CNS HIV infection, we conducted an open-labelled pilot study of its effects on cerebrospinal fluid (CSF) and blood biomarkers of infection and immune responses in 7 viremic subjects not taking antiretroviral therapy.</p> <p>Results</p> <p>There were no discernable effects of minocycline on CSF or blood HIV-1 RNA, or biomarkers of immune activation and inflammation including: CSF and blood neopterin, CSF CCL2, CSF white blood cell count, and expression of cell-surface activation markers on CSF and blood T lymphocytes and monocytes.</p> <p>Conclusions</p> <p>This pilot study of biological responses to minocycline suggests little potential for its use as adjunctive antiviral or immunomodulating therapy in chronic untreated HIV infection.</p

    Fluctuating-friction molecular motors

    Full text link
    We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. vol. 9, 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter (http://www.iop.org/Journals/JPhysCM

    Spontaneous Oscillations of Collective Molecular Motors

    Full text link
    We analyze a simple stochastic model to describe motor molecules which cooperate in large groups and present a physical mechanism which can lead to oscillatory motion if the motors are elastically coupled to their environment. Beyond a critical fuel concentration, the non-moving state of the system becomes unstable with respect to a mode with angular frequency omega. We present a perturbative description of the system near the instability and demonstrate that oscillation frequencies are determined by the typical timescales of the motors.Comment: 11 pages, Revtex, 4 pages Figure

    Interpreting cerebrospinal fluid pleocytosis in HIV in the era of potent antiretroviral therapy

    Get PDF
    Background: Cerebrospinal fluid (CSF) pleocytosis may be seen in asymptomatic HIV-infected individuals. This finding complicates interpretation of CSF abnormalities when such individuals are evaluated for other central nervous system infections. The goal of this study was to determine the relationship between CSF pleocytosis, central nervous system (CNS) antiretroviral penetration, adherence to antiretroviral medication regimens, neurological symptoms and performance on neuropsychological tests. Methods: Clinically stable HIV-infected individuals at any peripheral blood CD4+ T cell count or any plasma viral load were asked to attend study visits at entry and every 6 months thereafter for at least one year. At each visit, they underwent a standardized neurological and medication history; neurological examination; a brief neuropsychological test battery: venipuncture; lumbar puncture; and assessment of medication adherence. Generalized estimating equations (GEE) were used to assess the relationships between CSF pleocytosis and other variables. Results: CSF pleocytosis was independently and significantly related to lack of current antiretroviral use (OR 5.9, 95% CI 1.8-18.6, p = 0.003), CD4 count >200/ul (OR 23.4, 95% CI 3.1-177.3, p = 0.002) and detectable plasma HIV RNA (OR 3.3, 95% CI 1.1-9.4, p = 0.03). At visits where antiretrovirals were used, and taking into account detectable plasma HIV RNA, an antiretroviral regimen that contained two or more agents with good CNS penetration conferred a trend toward lower odds of CSF pleocytosis (OR 0.45, 95% CI 0.18-1.12, p = 0.087). Conclusion: CSF pleocytosis is a characteristic of HIV disease that varies significantly with easily identifiable clinical and laboratory features. Use of antiretroviral agents decreases the odds of pleocytosis. This association may be stronger when the regimen contains two or more agents with good CNS penetration.This work was supported by National Institutes of Health grant U54 NS 39406 (AI and CMM)

    Compartmentalization and Clonal Amplification of HIV-1 Variants in the Cerebrospinal Fluid during Primary Infection

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is a severe neurological disease that affects a subset of HIV-1-infected individuals. Increased compartmentalization has been reported between blood and cerebrospinal fluid (CSF) HIV-1 populations in subjects with HAD, but it is still not known when compartmentalization arises during the course of infection. To assess HIV-1 genetic compartmentalization early during infection, we compared HIV-1 populations in the peripheral blood and CSF in 11 primary infection subjects, with analysis of longitudinal samples over the first 18 months for a subset of subjects. We used heteroduplex tracking assays targeting the variable regions of env and single-genome amplification and sequence analysis of the full-length env gene to identify CSF-compartmentalized variants and to examine viral genotypes within the compartmentalized populations. For most subjects, HIV-1 populations were equilibrated between the blood and CSF compartments. However, compartmentalized HIV-1 populations were detected in the CSF of three primary infection subjects, and longitudinal analysis of one subject revealed that compartmentalization during primary HIV-1 infection was resolved. Clonal amplification of specific HIV-1 variants was identified in the CSF population of one primary infection subject. Our data show that compartmentalization can occur in the central nervous system (CNS) of subjects in primary HIV-1 infection in part through persistence of the putative transmitted parental variant or via viral genetic adaptation to the CNS environment. The presence of distinct HIV-1 populations in the CSF indicates that independent HIV-1 replication can occur in the CNS, even early after HIV-1 transmission
    corecore