21 research outputs found

    Newborn pig skin as model membrane in in vitro drug permeation studies: A technical note

    No full text
    The suitability of newborn pig skin as an alternative to human epidermis in in vitro permeation studies was investigated. A set of 7 benzoxazinones was used to perform in vitro experiments by using a modified Franz diffusion cell and excised newborn pig skin as a membrane. The maximum flux through newborn pig skin (Jmax,p) was compared with the maximum flux through excised human epidermis (Jmax,h), available from the literature, by means of the factor of difference value FoD=Jmax,p/Jmax,h. The FoD values ranged from 0.48 to 1.91, indicating thatJmax,p andJmax,h were in the same order of magnitude

    Effects of some terpenes on the in-vitro permeation of LHRH through newborn pig skin

    No full text
    The objective of this work was to investigate the effect of oxygen containing terpenes (carvacrol, menthol and carvone) at 5%w/v in hydroalcoholic mixtures (40% ethanol) on the permeation of LHRH across newborn pig skin in vitro. In addition, the amount of LHRH retained in the skin after 24 h of diffusion was determined. It was found that the passive permeation of LHRH was very limited. Although percutaneous absorption of LHRH improved in the presence of the enhancers, a significant enhancement was observed only with carvacrol, an aromatic terpene. The rank order of enhancement ratio for skin permeation was found to be carvacrol > carvone > menthol. The enhancers also affected the retention of LHRH in the skin. The rank order of enhancement ratio for skin retention was carvone > carvacrol > menthol. The results of the in vitro skin metabolism study of LHRH using fresh newborn pig skin showed that the degradation products were detected and the amount of the degraded LHRH increased with increasing duration of incubation time
    corecore