24 research outputs found

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    Optimal weakening and damping using polynomial control for seismically excited nonlinear structures

    No full text
    This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase 1 of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total acceleration
    corecore