688 research outputs found

    Catheters and Infections

    Get PDF
    Catheters are used for effective drainage of the bladder, either temporally or permanently, in the presence of physiological and anatomical defects or obstruction of the lower urinary tract. Catheters are used for a variety of reasons, as follows, to maintain bladder drainage during and following surgery or epidurals anesthesia for minimizing and prevention of the risk of distension injuries; investigations, for accurate urine output measurement, and measurement of post-micturition residuals; treatments, to relieve urinary retention or for chemotherapy instillation; intractable incontinence, as the final option for containment

    Current Trends in Urinary Diversion in Men

    Get PDF
    Prior to the introduction of the ileal conduit more than four decades ago, the options for urinary diversion after cystectomy were extremely limited. Direct cutaneous anastomoses of the collecting system (cutaneous pyelostomies, ureterostomies) offered patients a short-term diversion, but the benefits were outweighed by significant complications: recession or stenosis of the stoma. The first choice of diversion was the ureterosigmoidostomy with or without antireflux technique. Then it fell in popularity and was replaced with continent/non-continent uretero-ileo-cutaneous diversions. Only in the last years the continent orthotopic neobladder has been widely employed as first procedure choice. At present, patients can be offered a non-continent cutaneous diversion, a continent cutaneous diversion or an orthotopic neobladder urinary reconstructio

    Time domain study of frequency-power correlation in spin-torque oscillators

    Full text link
    This paper describes a numerical experiment, based on full micromagnetic simulations of current-driven magnetization dynamics in nanoscale spin valves, to identify the origins of spectral linewidth broadening in spin torque oscillators. Our numerical results show two qualitatively different regimes of magnetization dynamics at zero temperature: regular (single-mode precessional dynamics) and chaotic. In the regular regime, the dependence of the oscillator integrated power on frequency is linear, and consequently the dynamics is well described by the analytical theory of current-driven magnetization dynamics for moderate amplitudes of oscillations. We observe that for higher oscillator amplitudes, the functional dependence of the oscillator integrated power as a function of frequency is not a single-valued function and can be described numerically via introduction of nonlinear oscillator power. For a range of currents in the regular regime, the oscillator spectral linewidth is a linear function of temperature. In the chaotic regime found at large current values, the linewidth is not described by the analytical theory. In this regime we observe the oscillator linewidth broadening, which originates from sudden jumps of frequency of the oscillator arising from random domain wall nucleation and propagation through the sample. This intermittent behavior is revealed through a wavelet analysis that gives superior description of the frequency jumps compared to several other techniques.Comment: 11 pages, 4 figures to appear in PR

    Detection of LDDoS Attacks Based on TCP Connection Parameters

    Get PDF
    Low-rate application layer distributed denial of service (LDDoS) attacks are both powerful and stealthy. They force vulnerable webservers to open all available connections to the adversary, denying resources to real users. Mitigation advice focuses on solutions that potentially degrade quality of service for legitimate connections. Furthermore, without accurate detection mechanisms, distributed attacks can bypass these defences. A methodology for detection of LDDoS attacks, based on characteristics of malicious TCP flows, is proposed within this paper. Research will be conducted using combinations of two datasets: one generated from a simulated network, the other from the publically available CIC DoS dataset. Both contain the attacks slowread, slowheaders and slowbody, alongside legitimate web browsing. TCP flow features are extracted from all connections. Experimentation was carried out using six supervised AI algorithms to categorise attack from legitimate flows. Decision trees and k-NN accurately classified up to 99.99% of flows, with exceptionally low false positive and false negative rates, demonstrating the potential of AI in LDDoS detection

    Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density

    Get PDF
    Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm-2). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mgMEA PGM cm-2). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 hours operation at high current density (4 A cm-2) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 hours. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm-2, here achieved, appears very promising to decrease operating expenditures

    Enhanced performance of a PtCo recombination catalyst for reducing the H 2 concentration in the O 2 stream of a PEM electrolysis cell in the presence of a thin membrane and a high differential pressure

    Get PDF
    High electrochemical efficiency at elevated current densities and low H 2 concentration in O 2 can be achieved in PEM electrolysis using thin membrane and integrated recombination catalyst. An enhanced PtCo alloy recombination catalyst was synthesized and used at the anode of a membrane-electrode assembly (MEA). This allowed reducing the H 2 concentration in the oxygen stream during electrolysis operation with a thin 50 µm perfluorosulfonic acid (PFSA) Aquivion ® membrane. Both dual-layer and composite anode configurations (PtCo/IrRuOx) were investigated. The electrochemical performance of the MEAs containing the recombination catalyst was better than a bare MEA while producing a decrease of the H 2 content at the anode. This allowed extending the partial load operation down to 5% at 55°C under a differential pressure of 20 bar. The effects of the cathodic pressure and cell temperature (including evaluation of intermediate temperature operation at 140 °C) on both electrochemical performance and H 2 concentration in the anode stream were investigated. An excellent performance of 4 A cm -2 at 1.75 V, at 140 °C, 20 bar cathode pressure, 5.5 bar anode pressure, with 0.6 mg cm -2 overall precious metal catalysts content was recorded. At 140 °C, the MEA also showed a moderate H 2 concentration in O 2 of about 2.3 %, almost constant through most of the current density range
    corecore