8,389 research outputs found

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    Matter-Antimatter Asymmetry Induced by a Running Vacuum Coupling

    Full text link
    We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe.Comment: 6 pages two column format, 1 table. Published version EPJ

    Spectral Analysis of the Stromlo-APM Survey I. Spectral Properties of Galaxies

    Full text link
    We analyze spectral properties of 1671 galaxies from the Stromlo-APM survey, selected to have 15 < b_J < 17.15 and having a mean redshift z = 0.05. This is a representative local sample of field galaxies, so the global properties of the galaxy population provide a comparative point for analysis of more distant surveys. We measure Halpha, Oii 3727, Sii 6716, 6731, Nii 6583 and Oi 6300 equivalent widths and the D_4000 break index. The 5A resolution spectra use an 8 arcsec slit, which typically covers 40-50% of the galaxy area. We find no evidence for systematic trends depending on the fraction of galaxy covered by the slit, and further analysis suggests that our spectra are representative of integrated galaxy spectra. We classify spectra according to their Halpha emission, which is closely related to massive star formation. Overall we find 61% of galaxies are Halpha emitters with rest-frame equivalent widths EW(Halpha) >= 2A. The emission-line galaxy (ELG) fraction is smaller than seen in the CFRS at z = 0.2 and is consistent with a rapid evolution of Halpha luminosity density. The ELG fraction, and EW(Halpha), increase at fainter absolute magnitudes, smaller projected area and smaller D_4000. In the local Universe, faint, small galaxies are dominated by star formation activity, while bright, large galaxies are more quiescent. This picture of the local Universe is quite different from the distant one, where bright galaxies appear to show rapidly-increasing activity back in time. (Abridged)Comment: 40 pages, 25 figures, MNRAS, in pres

    Temperature equilibration in a fully ionized plasma: electron-ion mass ratio effects

    Full text link
    Brown, Preston, and Singleton (BPS) produced an analytic calculation for energy exchange processes for a weakly to moderately coupled plasma: the electron-ion temperature equilibration rate and the charged particle stopping power. These precise calculations are accurate to leading and next-to-leading order in the plasma coupling parameter, and to all orders for two-body quantum scattering within the plasma. Classical molecular dynamics can provide another approach that can be rigorously implemented. It is therefore useful to compare the predictions from these two methods, particularly since the former is theoretically based and the latter numerically. An agreement would provide both confidence in our theoretical machinery and in the reliability of the computer simulations. The comparisons can be made cleanly in the purely classical regime, thereby avoiding the arbitrariness associated with constructing effective potentials to mock up quantum effects. We present here the classical limit of the general result for the temperature equilibration rate presented in BPS. We examine the validity of the m_electron/m_ion --> 0 limit used in BPS to obtain a very simple analytic evaluation of the long-distance, collective effects in the background plasma.Comment: 14 pages, 4 figures, small change in titl

    Charged Particle Motion in a Highly Ionized Plasma

    Full text link
    A recently introduced method utilizing dimensional continuation is employed to compute the energy loss rate for a non-relativistic particle moving through a highly ionized plasma. No restriction is made on the charge, mass, or speed of this particle. It is, however, assumed that the plasma is not strongly coupled in the sense that the dimensionless plasma coupling parameter g=e^2\kappa_D/ 4\pi T is small, where \kappa_D is the Debye wave number of the plasma. To leading and next-to-leading order in this coupling, dE/dx is of the generic form g^2 \ln[C g^2]. The precise numerical coefficient out in front of the logarithm is well known. We compute the constant C under the logarithm exactly for arbitrary particle speeds. Our exact results differ from approximations given in the literature. The differences are in the range of 20% for cases relevant to inertial confinement fusion experiments. The same method is also employed to compute the rate of momentum loss for a projectile moving in a plasma, and the rate at which two plasmas at different temperatures come into thermal equilibrium. Again these calculations are done precisely to the order given above. The loss rates of energy and momentum uniquely define a Fokker-Planck equation that describes particle motion in the plasma. The coefficients determined in this way are thus well-defined, contain no arbitrary parameters or cutoffs, and are accurate to the order described. This Fokker-Planck equation describes the longitudinal straggling and the transverse diffusion of a beam of particles. It should be emphasized that our work does not involve a model, but rather it is a precisely defined evaluation of the leading terms in a well-defined perturbation theory.Comment: Comments: Published in Phys. Rep. 410/4 (2005) 237; RevTeX, 111 Pages, 17 Figures; Transcription error corrected in temperature equilibration rate (3.61) and (12.44) which replaces \gamma-2 by \gamma-

    Effective 't Hooft-Polyakov monopoles from pure SU(3) gauge theory

    Full text link
    The well known topological monopoles originally investigated by 't Hooft and Polyakov are known to arise in classical Yang-Mills-Higgs theory. With a pure gauge theory it is known that the classical Yang-Mills field equation do not have such finite energy configurations. Here we argue that such configurations may arise in a semi-quantized Yang-Mills theory, where the original gauge group, SU(3), is reduced to a smaller gauge group, SU(2), and with some combination of the coset fields of the SU(3) to SU(2) reduction acting as effective scalar fields. The procedure is called semi-quantized since some of the original gauge fields are treated as quantum degrees of freedom, while others are postulated to be effectively described as classical degrees of freedom. Some speculation is offer on a possible connection between these monopole configurations and the confinement problem, and the nucleon spin puzzle.Comment: one error is correcte

    Localization of Interacting Fields in Five-Dimensional Braneworld Models

    Get PDF
    We study localization properties of fundamental fields which are coupled to one another through the gauge mechanism both in the original Randall-Sundrum (RS) and in the modified Randall-Sundrum (MRS) braneworld models: scalar-vector, vector-vector, and spinor-vector configuration systems. For this purpose we derive conditions of localization, namely the finiteness of integrals over the extra coordinate in the action of the system considered. We also derive field equations for each of the systems and then obtain their solutions corresponding to the extra dimension by a separation of variable method for every field involved in each system. We then insert the obtained solutions into the conditions of localization to seek whether or not the solutions are in accordance with the conditions of localization. We obtain that not all of the configuration systems considered are localizable on the brane of the original RS model while, on the contrary, they are localizable on the MRS braneworld model with some restrictions. In terms of field localizability on the brane, this result shows that the MRS model is much better than the original RS model.Comment: 20 pages revtex4. No figures. Published in IJMP

    Persistence to high temperatures of interlayer coherence in an organic superconductor

    Full text link
    The interlayer magnetoresistance ρzz\rho_{zz} of the organic metal \cuscn is studied in fields of up to 45 T and at temperatures TT from 0.5 K to 30 K. The peak in ρzz\rho_{zz} seen in in-plane fields, a definitive signature of interlayer coherence, remains to TTs exceeding the Anderson criterion for incoherent transport by a factor 30\sim 30. Angle-dependent magnetoresistance oscillations are modeled using an approach based on field-induced quasiparticle paths on a 3D Fermi surface, to yield the TT dependence of the scattering rate τ1\tau^{-1}. The results suggest that τ1\tau^{-1} does not vary strongly over the Fermi surface, and that it has a T2T^2 dependence due to electron-electron scattering
    corecore