29 research outputs found

    1060 nm Single-Mode VCSEL and Single-Mode Fiber Links for Long-Reach Optical Interconnects

    Get PDF
    We investigate the use of a 1060 nm single-mode vertical-cavity surface-emitting laser (VCSEL) and a 1060 nm single-mode fiber as a competitive single-mode technology for cost-and power-efficient long-reach optical interconnects. Error-free transmission (bit error rate < 10-12) over 2 km is demonstrated at bitrates up to 40 Gb/s under on-off keying non-return-to-zero (OOK-NRZ) modulation, without equalization, forward-error correction, or other forms of digital signal processing. The VCSEL is extensively characterized with respect to its static and dynamic performances, including the power-voltage-current characteristics, spectral characteristics, beam divergence, modulation response, relative intensity noise, and frequency chirp. The measured dependence of power penalty on fiber length is consistent with an analysis of chirp-induced pulse compression and broadening along the negative chromatic dispersion fiber

    Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation

    Get PDF
    Š 2015 Elsevier Ltd. We investigated the bioremediation of 16 polycyclic aromatic hydrocarbons (PAH) in historically creosote contaminated soil using both laboratory and field scale experiments. We found that nutrient amendments and circulation of methyl-β-cyclodextrin (CD) solution enhanced soil microbial degradation capacity. In the laboratory experiment, the degradation of lower molecular weight, 2-3 ringed PAHs was achieved already by circulating nutrient solution and the use of CD mainly increased the desorption and removal of larger, 4-5 aromatic ringed PAH compounds. The 1% CD concentration was most feasible for bioremediation as most of the extracted PAH compounds were degraded. In the 5% CD treatment, the PAH desorption from soil was too fast compared to the degradation capacity and 25% of the total PAH amount remained in the circulated solution. Similar lab-scale results have been generated earlier, but very little has been done in full field scale, and none in freezing conditions. Although freezing stopped circulation and degradation completely during the winter, PAH degradation returned during the warm period in the field test. Circulation effectiveness was lower than in the laboratory but the improved nutrient and moisture content seemed to be the main reason for decreasing soil PAH concentrations. It also appeared that PAH extraction yield in chemical analysis was increased by the CD treatment in field conditions and the results of CD-treated and non-treated soil may therefore not be directly comparable. Therefore, a positive effect of CD on PAH degradation velocity could not be statistically confirmed in the field test. Based on our results, we recommend initiating the bioremediation of PAH contaminated soil by enhancing the microbial degradation with nutrient amendments. The CD seems to be useful only at the later stage when it increases the solubilisation of strongly absorbed contaminants to some extent. More investigation is also needed of the CD effect on the PAH yield in the chemical analysis

    Soil vapor extraction of wet gasoline-contaminated soil made possible by electroosmotic dewatering–lab simulations applied at a field site

    Get PDF
    © 2017 The Author(s)Purpose: Soil restoration is still mainly carried out ex situ by excavating and replacing the contaminated soil. In situ remediation would reduce the costs of soil transportation and this way, the problem is not merely transferred elsewhere. The present study introduces a field case where the aged, oil-contaminated soil in a former fuel station in Finland was treated in situ sequentially with different methods. Materials and methods: Several approaches, including soil vapor extraction and biostimulation with electrokinetic pumping, were performed in the field. After these treatments, the dense original portion of the soil beneath the gasoline pump location, ca 100 m3, was still contaminated with petroleum-derived volatile organic compounds (VOCs), with concentrations of nearly 10,000 mg kg−1 measured at some hotspots. After a period of electroosmotic water circulation, the electrical field (0.5 V cm−1, DC) was kept connected for 6 months without addition of water, leading to dewatering and warming of the soil. Results and discussion: In contrast to the situation with the original wet soil, VOCs, in lab conditions, were found to volatilize very efficiently from the dewatered soil. When the soil vapor extraction treatment was renewed using perforated tubing installed horizontally at ca 1 m depth in the dewatered soil at the contaminated site, the treatment was efficient and the soil was decontaminated in 5 months. The final VOC concentrations were on average 190 mg kg−1 (n = 13) with the highest value of 700 mg kg−1 at one hotspot. After a risk evaluation, the site was concluded to be sufficiently clean for industrial use. Conclusions: Since with many former fuel stations, the contamination consists of both volatile fractions that are difficult to degrade by biological means and heavier compounds for which biostimulation is often suitable, a combination of different methods may be worth pursuing

    1060 nm VCSELs for long-reach optical interconnects

    Get PDF
    Reach extension of high capacity optical interconnects based on vertical-cavity surface-emitting lasers (VCSELs) and multimode fibers (MMFs), as needed for large-scale data centers, would benefit from high-speed GaAs-based VCSELs at 1060 nm. At this wavelength, the chromatic dispersion and attenuation of the optical fiber are much reduced in comparison with 850 nm. We present single and multimode 1060 nm VCSELs based on designs derived partly from our high-speed 850 nm VCSEL designs. The single-mode VCSEL, with a modulation bandwidth exceeding 22 GHz, supports back-to-back data rates up to 50 Gbps at 25 \ub0C and 40 Gbps at 85 \ub0C under binary NRZ (OOK) modulation. Using mode-selective launch, we demonstrate error-free 25 Gbps transmission over 1000 m of 1060 nm optimized MMF. Higher data rates and/or longer distances will be possible with equalization, forward-error-correction, and/or multilevel modulation

    Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation

    Get PDF
    Š 2015 Elsevier Ltd. We investigated the bioremediation of 16 polycyclic aromatic hydrocarbons (PAH) in historically creosote contaminated soil using both laboratory and field scale experiments. We found that nutrient amendments and circulation of methyl-β-cyclodextrin (CD) solution enhanced soil microbial degradation capacity. In the laboratory experiment, the degradation of lower molecular weight, 2-3 ringed PAHs was achieved already by circulating nutrient solution and the use of CD mainly increased the desorption and removal of larger, 4-5 aromatic ringed PAH compounds. The 1% CD concentration was most feasible for bioremediation as most of the extracted PAH compounds were degraded. In the 5% CD treatment, the PAH desorption from soil was too fast compared to the degradation capacity and 25% of the total PAH amount remained in the circulated solution. Similar lab-scale results have been generated earlier, but very little has been done in full field scale, and none in freezing conditions. Although freezing stopped circulation and degradation completely during the winter, PAH degradation returned during the warm period in the field test. Circulation effectiveness was lower than in the laboratory but the improved nutrient and moisture content seemed to be the main reason for decreasing soil PAH concentrations. It also appeared that PAH extraction yield in chemical analysis was increased by the CD treatment in field conditions and the results of CD-treated and non-treated soil may therefore not be directly comparable. Therefore, a positive effect of CD on PAH degradation velocity could not be statistically confirmed in the field test. Based on our results, we recommend initiating the bioremediation of PAH contaminated soil by enhancing the microbial degradation with nutrient amendments. The CD seems to be useful only at the later stage when it increases the solubilisation of strongly absorbed contaminants to some extent. More investigation is also needed of the CD effect on the PAH yield in the chemical analysis

    Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation

    No full text
    Š 2015 Elsevier Ltd. We investigated the bioremediation of 16 polycyclic aromatic hydrocarbons (PAH) in historically creosote contaminated soil using both laboratory and field scale experiments. We found that nutrient amendments and circulation of methyl-β-cyclodextrin (CD) solution enhanced soil microbial degradation capacity. In the laboratory experiment, the degradation of lower molecular weight, 2-3 ringed PAHs was achieved already by circulating nutrient solution and the use of CD mainly increased the desorption and removal of larger, 4-5 aromatic ringed PAH compounds. The 1% CD concentration was most feasible for bioremediation as most of the extracted PAH compounds were degraded. In the 5% CD treatment, the PAH desorption from soil was too fast compared to the degradation capacity and 25% of the total PAH amount remained in the circulated solution. Similar lab-scale results have been generated earlier, but very little has been done in full field scale, and none in freezing conditions. Although freezing stopped circulation and degradation completely during the winter, PAH degradation returned during the warm period in the field test. Circulation effectiveness was lower than in the laboratory but the improved nutrient and moisture content seemed to be the main reason for decreasing soil PAH concentrations. It also appeared that PAH extraction yield in chemical analysis was increased by the CD treatment in field conditions and the results of CD-treated and non-treated soil may therefore not be directly comparable. Therefore, a positive effect of CD on PAH degradation velocity could not be statistically confirmed in the field test. Based on our results, we recommend initiating the bioremediation of PAH contaminated soil by enhancing the microbial degradation with nutrient amendments. The CD seems to be useful only at the later stage when it increases the solubilisation of strongly absorbed contaminants to some extent. More investigation is also needed of the CD effect on the PAH yield in the chemical analysis

    Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation

    No full text
    Š 2015 Elsevier Ltd. We investigated the bioremediation of 16 polycyclic aromatic hydrocarbons (PAH) in historically creosote contaminated soil using both laboratory and field scale experiments. We found that nutrient amendments and circulation of methyl-β-cyclodextrin (CD) solution enhanced soil microbial degradation capacity. In the laboratory experiment, the degradation of lower molecular weight, 2-3 ringed PAHs was achieved already by circulating nutrient solution and the use of CD mainly increased the desorption and removal of larger, 4-5 aromatic ringed PAH compounds. The 1% CD concentration was most feasible for bioremediation as most of the extracted PAH compounds were degraded. In the 5% CD treatment, the PAH desorption from soil was too fast compared to the degradation capacity and 25% of the total PAH amount remained in the circulated solution. Similar lab-scale results have been generated earlier, but very little has been done in full field scale, and none in freezing conditions. Although freezing stopped circulation and degradation completely during the winter, PAH degradation returned during the warm period in the field test. Circulation effectiveness was lower than in the laboratory but the improved nutrient and moisture content seemed to be the main reason for decreasing soil PAH concentrations. It also appeared that PAH extraction yield in chemical analysis was increased by the CD treatment in field conditions and the results of CD-treated and non-treated soil may therefore not be directly comparable. Therefore, a positive effect of CD on PAH degradation velocity could not be statistically confirmed in the field test. Based on our results, we recommend initiating the bioremediation of PAH contaminated soil by enhancing the microbial degradation with nutrient amendments. The CD seems to be useful only at the later stage when it increases the solubilisation of strongly absorbed contaminants to some extent. More investigation is also needed of the CD effect on the PAH yield in the chemical analysis

    Long-Reach 1060 nm SM VCSEL - SMF Optical Interconnects

    No full text
    We explore the low-cost, low-power GaAs-VCSEL technology for long-reach interconnects at 1060 nm. With reduced fiber attenuation and chromatic dispersion compared to 850 nm, we demonstrate error-free 40 Gbps OOK-NRZ transmission over 2 km SMF using a SM VCSEL
    corecore