876 research outputs found

    Path selection system development and evaluation for a Martian roving vehicle

    Get PDF
    A path selection system evaluation test procedure has been developed to enhance the analysis capability of an existing digital computer simulation package. The procedure investigates the obstacle avoidance ability of a path selection system on a sequence of test terrains with and without random effects. Using the standard test procedure a proposed mid-range sensor system has been evaluated and recommendations directed at improving the performance of the system have been made. In addition, the initial development and evaluation of a short range sensor system has been undertaken

    Coal Law and Regulation

    Get PDF

    Comparisons of various configurations of the edge delamination test for interlaminar fracture toughness

    Get PDF
    Various configurations of Edge Delamination Tension (EDT) test specimens, of both brittle (T300/5208) and toughened-matrix (T300/BP907) graphite reinforced composite laminates, were manufactured and tested. The mixed-mode interlaminar fracture toughness, G sub C, was measured using (30/30 sub 2/30/90 sub N)sub s, n=1 or 2, (35/-35/0/90) sub s and (35/0/-35/90) sub s layups designed to delaminate at low tensile strains. Laminates were made without inserts so that delaminations would form naturally between the central 90 deg plies and the adjacent angle plies. Laminates were also made with Teflon inserts implanted between the 90 deg plies and the adjacent angle (theta) plies at the straight edge to obtain a planar fracture surface. In addition, interlaminar tension fracture toughness, GIc, was measured from laminates with the same layup but with inserts in the midplane, between the central 90 deg plies, at the straight edge. All of the EDT configurations were useful for ranking the delamination resistance of composites with different matrix resins. Furthermore, the variety of layups and configurations available yield interlaminar fracture toughness measurements needed to generate delamination failure criteria. The influence of insert thickness and location, and coupon size on G sub c values were evaluated

    Investigation of heat transfer augmentation through use of internally finned and roughened tubes : final summary report

    Get PDF
    This report summarizes a three-year program concerned with obtaining basic design information for tubes having a random roughness on the inside wall (RID) and tubing having continuous internal fins (Forge Fin). Test apparatus and procedures were developed to obtain accurate heat-transfer and friction data for a wide variety of tube geometries using water as the test fluid. For the random roughness the heat-transfer coefficient was above the smooth tube value, for comparable flow conditions, by over 60 percent at a Reynolds number of 30,000. Larger percentage improvements can be expected for higher Reynolds numbers and for fluids having higher Prandtl numbers. Improvements in performance, based on equal pumping power for augmented and smooth tubes, of about 50 percent were observed. The heat-transfer characteristics for tape-generated swirl flow through rough tubes were investigated in order to determine the interaction of swirl flow and roughness effects. For the particular range of parameters covered, for equal flow rates, the maximum improvement in heat transfer with swirl flow in smooth tubes was 70 percent, whereas with swirl flow in rough tubes, the improvement was as much as 100 percent. The heat-transfer coefficient for rough tube swirl flow was accurately correlated by a modification of an additive expression previously suggested for prediction of smooth tube swirl flow data.(cont.) The test program for internally finned tubes established that short spiralled fins produce the greatest improvement in heat transfer. On the basis of equal flow conditions, the heat transfer was improved by over 200 percent; while at equal pumping power, the performance was as high as 170 percent. These improvements, which are attributed to increased area and turbulence promotion, appear to equal the improvements displayed by any of the schemes used to augment heat transfer inside tubes. In order to bring the augmentation problem into perspective, a discussion of data for other types of roughness and finning is included.DS

    Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV

    Get PDF
    Annabel H Nickol1,2, Nicholas Hart1,3, Nicholas S Hopkinson1, Carl-Hugo Hamnegård4, John Moxham5, Anita Simonds1, Michael I Polkey11Respiratory Muscle Laboratory, Royal Brompton Hospital, London, UK; 2Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK; 3The Lane Fox Unit, St Thomas’ Hospital, London, UK; 4Department of Pulmonary Medicine and Clinical Physiology, Sahlgrenska University, Gotenborg, Sweden; 5Respiratory Muscle Laboratory, King’s College London School of Medicine, King’s College Hospital, London, UKBackground: Noninvasive ventilation (NIV) improves gas-exchange and symptoms in selected chronic obstructive pulmonary disease (COPD) patients with hypercapnic respiratory failure. We hypothesized NIV reverses respiratory failure by one or all of increased ventilatory response to carbon-dioxide, reduced respiratory muscle fatigue, or improved pulmonary mechanics.Methods: Nineteen stable COPD patients (forced expiratory volume in one second 35% predicted) were studied at baseline (D0), 5–8 days (D5) and 3 months (3M) after starting NIV.Results: Ventilator use was 6.2 (3.7) hours per night at D5 and 3.4 (1.6) at 3M (p = 0.12). Mean (SD) daytime arterial carbon-dioxide tension (PaCO2) was reduced from 7.4 (1.2) kPa to 7.0 (1.1) kPa at D5 and 6.5 (1.1) kPa at 3M (p = 0.001). Total lung capacity decreased from 107 (28) % predicted to 103 (28) at D5 and 103 (27) % predicted at 3M (p = 0.035). At D5 there was an increase in the hypercapnic ventilatory response and some volitional measures of inspiratory and expiratory muscle strength, but not isolated diaphragmatic strength whether assessed by volitional or nonvolitional methods.Conclusion: These findings suggest decreased gas trapping and increased ventilatory sensitivity to CO2 are the principal mechanism underlying improvements in gas-exchange in patients with COPD following NIV. Changes in some volitional but not nonvolitional muscle strength measures may reflect improved patient effort.Keywords: COPD; hypercapnic respiratory failure; NIV; pulmonary mechanics; ventilatory driv

    The initial impact of the COVID-19 pandemic on the diagnosis of new cancers at a large pathology laboratory in the public health sector, Western Cape Province, South Africa

    Get PDF
    Background. The COVID-19 pandemic has disrupted cancer diagnostic services. A decline in the number of new cancers being diagnosed over a relatively short term implies a delay in diagnosis and subsequent treatment. This delay is expected to have a negative effect on cancerrelated morbidity and mortality. The impact of the pandemic on the number of new cancer diagnoses in our setting is unknown.Objectives. To assess the impact of COVID-19 on the number of new cancers diagnosed at our institution in the first 3 months following the implementation of lockdown restrictions, by focusing on common non-cutaneous cancers.Methods. A retrospective laboratory-based audit was performed at a large anatomical pathology laboratory in Western Cape Province, South Africa. The numbers of new diagnoses for six common cancers (breast, prostate, cervix, large bowel, oesophagus and stomach) from 1 April 2020 to 30 June 2020 were compared with the corresponding period in 2019.Results. Histopathological diagnoses for the six cancers combined decreased by 193 (–36.3%), from 532 new cases in the 2019 study period to 339 in the corresponding period in 2020. Substantial declines were seen for prostate (–58.2%), oesophageal (–44.1%), breast (–32.9%), gastric (–32.6%) and colorectal cancer (–29.2%). The smallest decline was seen in cervical cancer (–7%). New breast cancers diagnosed by cytopathology declined by 61.1%.Conclusions. The first wave of the COVID-19 pandemic and the associated response resulted in a substantial decline in the number of new cancer diagnoses, implying a delay in diagnosis. Cancer-related morbidity and mortality is expected to rise as a result, with the greatest increase in mortality expected from breast and colorectal cancer
    corecore