2,828 research outputs found
How Is Stress Reduced by a Workplace Mindfulness Intervention? A Qualitative Study Conceptualising Experiences of Change
Mindfulness-based interventions are effective as curative and preventative approaches to psychological health. However, the mechanisms by which outcomes are secured from such interventions when delivered in the workplace, and to a stressed workforce, are not well understood. The aim of the present study was to elicit and analyse accounts from past participants of a workplace mindfulness intervention in order to generate a preliminary model of how positive benefits appear to be secured. In-depth, semi-structured interviews were completed with 21 employees of a higher education institution who had completed an eight-week intervention based on Mindfulness-Based Stress Reduction, adapted for the workplace. Interviews invited participants to recount their experiences of the intervention and its impact, if any, on their work life. Aspects of the interview data that pertained to intervention experience and positive benefits were analysed using a version of grounded theory, leading to the generation of a provisional model of how positive change occurred. The model suggests that discrete, temporal experiences build on each other to generate multiple, positive benefits. As anticipated in mindfulness-based interventions, enhanced attentional capacity was important, but our provisional model also suggests that resonance, self-care, detection of stress markers, perceiving choice, recovering self-agency and upward spiralling may be central mechanisms that lead to positive outcomes. Understanding mechanisms of change may help support participant engagement and trust in work-based mindfulness programmes, and enhance participants’ ability to apply mindfulness in their work life
Development of on-line FTIR spectroscopy for siloxane detection in biogas to enhance carbon contactor management
Activated carbon filters are used to limit engine damage by siloxanes when biogas is utilised to provide electricity. However, carbon filter siloxane removal performance is poorly understood as until recently, it had not been possible to measure siloxanes on-line. In this study, on-line Fourier Transform Infrared (FTIR) spectroscopy was developed to measure siloxane concentration in real biogas both upstream (86.1–157.5 mg m−3) and downstream (2.2–4.3 mg m−3) of activated carbon filters. The FTIR provided reasonable precision upstream of the carbon vessel with a root mean square error of 10% using partial least squares analysis. However, positive interference from volatile organic carbons was observed in downstream gas measurements limiting precision at the outlet to an RMSE of 1.5 mg m−3 (47.8%). Importantly, a limit of detection of 3.2 mg m−3 was identified which is below the recommended siloxane limit and evidences the applicability of on-line FTIR for this application
Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy including senscence, necrosis, and autophagy, but not apoptosis
In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer
Trade unions and the challenge of fostering solidarities in an era of financialisation
This articles re-examines evidence that trade unions in the UK have struggled to renew themselves despite considerable investment of time and effort. It argues that financialisation in the realms of capital accumulation, organisational decision making and everyday life has introduced new barriers to building the solidarities within and between groups of workers that would be necessary to develop a stronger response to the catastrophic effects on labour of financialisation in general, and the financial crisis specifically. The crisis highlighted the weaknesses of trade unions as institutions of economic and industrial democracy, but has also given some opportunities to establish narratives of solidarity in spaces and platforms created within a financialised context
"Petit spot" rejuvenated volcanism superimposed on plume-derived Samoan shield volcanoes: Evidence from a 645-m drill core from Tutuila Island, American Samoa
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(3), (2019): 1485-1507, doi:10.1029/2018GC007985.In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures.Reviews from Kaj Hoernle and three anonymous reviewers are gratefully acknowledged. M. G. J. acknowledges support from the American Samoa Power Authority and National Science Foundation grants OCE‐1736984 and EAR‐1624840. The Tutuila drill core was the brainchild of Tim Bodell, without whom we would still have no stratigraphic record of Tutuila volcanism. The support of Utu Abe Malae and Matamua Katrina Mariner was instrumental to the project's success. We dedicate this paper to the memory of Abe Malae and his efforts to support science and education in American Samoa. Images of the entire drill core are available online (escholarship.org/uc/item/6gg6p61w). All data presented are either part of this study or previously published and are referenced in text.2019-08-1
Adaptive response and enlargement of dynamic range
Many membrane channels and receptors exhibit adaptive, or desensitized,
response to a strong sustained input stimulus, often supported by protein
activity-dependent inactivation. Adaptive response is thought to be related to
various cellular functions such as homeostasis and enlargement of dynamic range
by background compensation. Here we study the quantitative relation between
adaptive response and background compensation within a modeling framework. We
show that any particular type of adaptive response is neither sufficient nor
necessary for adaptive enlargement of dynamic range. In particular a precise
adaptive response, where system activity is maintained at a constant level at
steady state, does not ensure a large dynamic range neither in input signal nor
in system output. A general mechanism for input dynamic range enlargement can
come about from the activity-dependent modulation of protein responsiveness by
multiple biochemical modification, regardless of the type of adaptive response
it induces. Therefore hierarchical biochemical processes such as methylation
and phosphorylation are natural candidates to induce this property in signaling
systems.Comment: Corrected typos, minor text revision
Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques
Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock’s exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼1–1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region. Archaeology is focused upon material records, contextualized in time. Rock art is a record with the potential to provide unique insight into the dynamics and evolution of culture, but it generally lacks stratigraphic or chronologic context. Interpretation of the origin and meaning of rock art is indirect at best, or simply speculative. In the case of some pictographs, pigments may include or have enough accessory carbon for accelerator mass spectrometry (AMS) radiocarbon dating (1⇓⇓–4). In other special situations, such as caves, minimum age constraints have been obtained by various techniques of dating material that overlies or entombs rock art (5⇓–7). However, most rock art remains undatable and researchers rely upon stylistic comparison and indirect associations with artifacts at nearby sites (8, 9). The case in point for this study is arguably the most compelling and debated rock art in the United States—the Barrier Canyon style (BCS) of the Colorado Plateau. Previous attempts to derive an absolute chronology have failed and its age remains unknown, with widely ranging hypotheses that have remained untested until now. The continued development of dating techniques offers new possibilities for hypothesis testing. The optically stimulated luminescence (OSL) signals from mineral grains make it possible to date the deposition of most sediment that is exposed to a few seconds of full sunlight before burial, and its use in the earth and cultural sciences has greatly increased (10, 11). Among the latest applications of OSL are techniques dating the outer surfaces of rock clasts that have become shielded from light, including those with archaeological context (12⇓⇓–15). Recent work has furthermore used the “bleaching” profile of decreasing luminescence signal toward the surface of rock to estimate exposure time to sunlight (16, 17). Using these dating tools, we can constrain the age of rock art and gain new insight into past cultures and landscapes. Here, we synthesize results from three approaches to dating the type section of BCS art, the Great Gallery in Canyonlands National Park of southeastern Utah. Through dating the full alluvial stratigraphy and a rockfall event that both have incontrovertible cross-cutting relations with the rock art, and then by determining the exposure duration of a painted rock surface, we greatly narrow the window of time when the rock art was created. These approaches do not require direct sampling of rock art and have strong potential for application to other archaeological and surface processes research. Although our results are only for the type section of BCS art, and chronological variability should be expected for the style across the region, they suggest that BCS art coincides with the transition to agriculture in the northern Colorado Plateau and may not have been limited to a specific archaeological culture
High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits
The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit
- …
