25 research outputs found

    A proposed mechanism for progesterone regulation of trophoblast MMP2 transcription independent of classical progesterone response elements on its promoter

    Get PDF
    BACKGROUND: Progesterone receptor act as ligand-inducible transcription factor in the respective target cells by binding to specific progesterone response elements in the promoter of the target genes. However, despite the lack of the classical progesterone response elements on matrix-metalloproteinase-2 promoter, progesterone has been shown to decrease the activity of this promoter PRESENTATION OF THE HYPOTHESIS: It has recently been suggested that in addition to interacting with their classical co-activators and co-repressors, progesterone receptor are capable of binding to several transcription factors. By interacting with other classes of transcription factors, progesterone receptor is capable of transcriptional activation through the transcription factors cognate DNA binding site. TESTING THE HYPOTHESIS: Exploring transcription factors and transcription binding sites, interacting with the progesterone receptor in modulation of the matrix-metalloproteinase promoter. IMPLICATIONS OF THE HYPOTHESIS: Identification of additional endogenous progesterone target genes makes it possible to further explore the signaling mechanisms by which the hormone regulates biological actions. Furthermore, the concepts of ligand-driven conformational diversity and selective tissue actions can be exploited in the future for drug development which selectively regulate orphan receptors from the nuclear receptor family

    Inhibition of Histone Deacetylase Activity in Human Endometrial Stromal Cells Promotes Extracellular Matrix Remodelling and Limits Embryo Invasion

    Get PDF
    Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy. Gene expression is post-transcriptionally regulated by histone deacetylases (HDACs) that unpacks condensed chromatin activating gene expression. In this study we analyze the effect of histone acetylation on the expression of tissue remodeling enzymes and activity of human endometrial stromal cells (hESCs) related to trophoblast invasion control. Treatment of hESCs with the HDAC inhibitor trichostatin A (TSA) increased the expression of TIMP-1 and TIMP-3 while decreased MMP-2, MMP-9 and uPA and have an inhibitory effect on trophoblast invasion. Moreover, histone acetylation is detected at the promoters of TIMP-1 and TIMP-3 genes in TSA-treated. In addition, in an in vitro decidualized hESCs model, the increase of TIMP-1 and TIMP-3 expression is associated with histone acetylation at the promoters of these genes. Our results demonstrate that histone acetylation disrupt the balance of ECM modulators provoking a restrain of trophoblast invasion. These findings are important as an epigenetic mechanism that can be used to control trophoblast invasion
    corecore