81 research outputs found
Patient-specific polyvinyl alcohol phantom fabrication with ultrasound and x-ray contrast for brain tumor surgery planning
Phantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required. Therefore, a phantom was developed using real patient data as input and 3D printing of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during surgery. The phantom was successfully tested during a surgical simulation in a virtual operating room. The phantom fabrication method uses commercially available materials and is easy to reproduce. The 3D printing files can be readily shared, and the technique can be adapted to encompass many different types of tumor
The management and outcome for patients with chronic subdural hematoma: a prospective, multicenter, observational cohort study in the United Kingdom
Symptomatic chronic subdural hematoma (CSDH) will become an increasingly common presentation in neurosurgical practice as the population ages, but quality evidence is still lacking to guide the optimal management for these patients. The British Neurosurgical Trainee Research Collaborative (BNTRC) was established by neurosurgical trainees in 2012 to improve research by combining the efforts of trainees in each of the United Kingdom (UK) and Ireland's neurosurgical units (NSUs). The authors present the first study by the BNTRC that describes current management and outcomes for patients with CSDH throughout the UK and Ireland. This provides a resource both for current clinical practice and future clinical research on CSDH
Soft optically-tuneable fluorescence phantoms based on gel wax and quantum dots: a tissue surrogate for fluorescence imaging validation
Fluorescence-guided brain tumour resection, notably using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) for high-grade gliomas, has been demonstrated to provide better tissue differentiation, thereby improving patient outcomes when compared to white-light guidance. Novel fluorescence imaging devices aiming to increase detection specificity and sensitivity and targeting applications beyond high-grade gliomas are typically assessed by measurements using tissue-mimicking optical phantoms. The field currently lacks adequate phantoms with well-characterised tuneable optical properties. In this study, we developed soft tissue-mimicking fluorescence phantoms (TMFP) highly suitable for this purpose. We investigated: 1) the ability to independently tune optical and fluorescent properties; 2) the stability of the fluorescence signal over time; and 3) the potential of the proposed phantoms for imaging device validation. The TMFP is based on gel-wax which is an optically transparent mineral-oil based soft material. We embedded TiO2 as scattering material, carbon black oil-paint as background absorber, and CdTe Quantum Dots (QDs) as fluorophore because of its similar fluorescence spectrum to PpIX. Scattering and absorption properties were measured by a spectrophotometer, while the fluorescence was assessed by a wide-field fluorescence imaging system (WFFI) and a spectrometer. We demonstrated that: 1) the addition of QDs didn’t alter the phantom’s scattering which was only defined by the concentration of TiO2, whereas its absorption was defined by both QDs and colour oil paint; 2) the measured fluorescence intensity was linearlyproportional to the concentration of QDs; 3) the fluorescence intensity was stable over time (up to eight months); and 4) the fluorescence signal measured by the WFFI were strongly correlated to spectrometer measurements
Deep Reinforcement Learning Based System for Intraoperative Hyperspectral Video Autofocusing
Hyperspectral imaging (HSI) captures a greater level of spectral detail than
traditional optical imaging, making it a potentially valuable intraoperative
tool when precise tissue differentiation is essential. Hardware limitations of
current optical systems used for handheld real-time video HSI result in a
limited focal depth, thereby posing usability issues for integration of the
technology into the operating room. This work integrates a focus-tunable liquid
lens into a video HSI exoscope, and proposes novel video autofocusing methods
based on deep reinforcement learning. A first-of-its-kind robotic focal-time
scan was performed to create a realistic and reproducible testing dataset. We
benchmarked our proposed autofocus algorithm against traditional policies, and
found our novel approach to perform significantly () better than
traditional techniques ( mean absolute focal error compared to
). In addition, we performed a blinded usability trial by having
two neurosurgeons compare the system with different autofocus policies, and
found our novel approach to be the most favourable, making our system a
desirable addition for intraoperative HSI.Comment: To be presented at MICCAI 202
Clinical Applications for Diffusion MRI and Tractography of Cranial Nerves Within the Posterior Fossa: A Systematic Review
Objective: This paper presents a systematic review of diffusion MRI (dMRI) and tractography of cranial nerves within the posterior fossa. We assess the effectiveness of the diffusion imaging methods used and examine their clinical applications. / Methods: The Pubmed, Web of Science and EMBASE databases were searched from January 1st 1997 to December 11th 2017 to identify relevant publications. Any study reporting the use of diffusion imaging and/or tractography in patients with confirmed cranial nerve pathology was eligible for selection. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS) tool. / Results: We included 41 studies comprising 16 studies of patients with trigeminal neuralgia (TN), 22 studies of patients with a posterior fossa tumor and three studies of patients with other pathologies. Most acquisition protocols used single-shot echo planar imaging (88%) with a single b-value of 1,000 s/mm2 (78%) but there was significant variation in the number of gradient directions, in-plane resolution, and slice thickness between studies. dMRI of the trigeminal nerve generated interpretable data in all cases. Analysis of diffusivity measurements found significantly lower fractional anisotropy (FA) values within the root entry zone of nerves affected by TN and FA values were significantly lower in patients with multiple sclerosis. Diffusivity values within the trigeminal nerve correlate with the effectiveness of surgical treatment and there is some evidence that pre-operative measurements may be predictive of treatment outcome. Fiber tractography was performed in 30 studies (73%). Most studies evaluating fiber tractography involved patients with a vestibular schwannoma (82%) and focused on generating tractography of the facial nerve to assist with surgical planning. Deterministic tractography using diffusion tensor imaging was performed in 93% of cases but the reported success rate and accuracy of generating fiber tracts from the acquired diffusion data varied considerably. / Conclusions: dMRI has the potential to inform our understanding of the microstructural changes that occur within the cranial nerves in various pathologies. Cranial nerve tractography is a promising technique but new avenues of using dMRI should be explored to optimize and improve its reliability
Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm
Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) could significantly improve clinical workflow and assist patient management. We have previously developed a novel artificial intelligence framework based on a 2.5D convolutional neural network achieving excellent results equivalent to those achieved by an independent human annotator. Here, we provide the first publicly-available annotated imaging dataset of VS by releasing the data and annotations used in our prior work. This collection contains a labelled dataset of 484 MR images collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery at a single institution. Data includes all segmentations and contours used in treatment planning and details of the administered dose. Implementation of our automated segmentation algorithm uses MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data will facilitate the development and validation of automated segmentation frameworks for VS and may also be used to develop other multi-modal algorithmic models
Systematic review of peritoneal lavage and dialysis for patients with severe acute pancreatitis
Aims
Severe acute pancreatitis (SAP) remains a lethal condition with a rising incidence worldwide. Recent randomised trials suggest that peritoneal lavage and/or dialysis (PLD), when administered early in SAP, may be beneficial to improve patient outcomes. This study aimed to review this data systematically.
Methods
Studies featuring PLD for the treatment of SAP were searched systematically (2012 Atlanta classification to 2023). A traditional approach to reporting data was augmented by a narrative synthesis.
Results
210 articles were reviewed, of which six studies featuring 499 patients were included. The technical approach, duration and type of lavage varied in each study and no safety concerns were reported. In patients undergoing PLD, improvements in inflammatory markers and length of stay were seen in all studies. Where reported, fewer invasive procedures for peri-pancreatic fluid collections were required after PLD. Lower mortality was seen in cohorts receiving laparoscopic lavage alone and combined lavage and dialysis when compared with standard treatment. All studies were rated at moderate or high risk of bias.
Conclusions
PLD demonstrates potential as an early therapy to improve outcomes for patients with SAP. Further research is required to define intervention delivery, explore acceptability and investigate efficacy through a powered randomised controlled trial
Clinical Applications for Diffusion MRI and Tractography of Cranial Nerves Within the Posterior Fossa: A Systematic Review
Objective: This paper presents a systematic review of diffusion MRI (dMRI) and tractography of cranial nerves within the posterior fossa. We assess the effectiveness of the diffusion imaging methods used and examine their clinical applications. / Methods: The Pubmed, Web of Science and EMBASE databases were searched from January 1st 1997 to December 11th 2017 to identify relevant publications. Any study reporting the use of diffusion imaging and/or tractography in patients with confirmed cranial nerve pathology was eligible for selection. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS) tool. / Results: We included 41 studies comprising 16 studies of patients with trigeminal neuralgia (TN), 22 studies of patients with a posterior fossa tumor and three studies of patients with other pathologies. Most acquisition protocols used single-shot echo planar imaging (88%) with a single b-value of 1,000 s/mm2 (78%) but there was significant variation in the number of gradient directions, in-plane resolution, and slice thickness between studies. dMRI of the trigeminal nerve generated interpretable data in all cases. Analysis of diffusivity measurements found significantly lower fractional anisotropy (FA) values within the root entry zone of nerves affected by TN and FA values were significantly lower in patients with multiple sclerosis. Diffusivity values within the trigeminal nerve correlate with the effectiveness of surgical treatment and there is some evidence that pre-operative measurements may be predictive of treatment outcome. Fiber tractography was performed in 30 studies (73%). Most studies evaluating fiber tractography involved patients with a vestibular schwannoma (82%) and focused on generating tractography of the facial nerve to assist with surgical planning. Deterministic tractography using diffusion tensor imaging was performed in 93% of cases but the reported success rate and accuracy of generating fiber tracts from the acquired diffusion data varied considerably. / Conclusions: dMRI has the potential to inform our understanding of the microstructural changes that occur within the cranial nerves in various pathologies. Cranial nerve tractography is a promising technique but new avenues of using dMRI should be explored to optimize and improve its reliability
Integrated multi-modality image-guided navigation for neurosurgery: open-source software platform using state-of-the-art clinical hardware.
PURPOSE: Image-guided surgery (IGS) is an integral part of modern neuro-oncology surgery. Navigated ultrasound provides the surgeon with reconstructed views of ultrasound data, but no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring. Such a system would be particularly useful in skull base neurosurgery. METHODS: We established functional and technical requirements of an integrated multi-modality IGS system tailored for skull base surgery with the ability to incorporate: (1) preoperative MRI data and associated 3D volume reconstructions, (2) real-time intraoperative neurophysiological data and (3) live reconstructed 3D ultrasound. We created an open-source software platform to integrate with readily available commercial hardware. We tested the accuracy of the system's ultrasound navigation and reconstruction using a polyvinyl alcohol phantom model and simulated the use of the complete navigation system in a clinical operating room using a patient-specific phantom model. RESULTS: Experimental validation of the system's navigated ultrasound component demonstrated accuracy of [Formula: see text] and a frame rate of 25 frames per second. Clinical simulation confirmed that system assembly was straightforward, could be achieved in a clinically acceptable time of [Formula: see text] and performed with a clinically acceptable level of accuracy. CONCLUSION: We present an integrated open-source research platform for multi-modality IGS. The present prototype system was tailored for neurosurgery and met all minimum design requirements focused on skull base surgery. Future work aims to optimise the system further by addressing the remaining target requirements
Synthetic white balancing for intra-operative hyperspectral imaging
Hyperspectral imaging shows promise for surgical applications to
non-invasively provide spatially-resolved, spectral information. For
calibration purposes, a white reference image of a highly-reflective Lambertian
surface should be obtained under the same imaging conditions. Standard white
references are not sterilizable, and so are unsuitable for surgical
environments. We demonstrate the necessity for in situ white references and
address this by proposing a novel, sterile, synthetic reference construction
algorithm. The use of references obtained at different distances and lighting
conditions to the subject were examined. Spectral and color reconstructions
were compared with standard measurements qualitatively and quantitatively,
using and normalised RMSE respectively. The algorithm forms a
composite image from a video of a standard sterile ruler, whose imperfect
reflectivity is compensated for. The reference is modelled as the product of
independent spatial and spectral components, and a scalar factor accounting for
gain, exposure, and light intensity. Evaluation of synthetic references against
ideal but non-sterile references is performed using the same metrics alongside
pixel-by-pixel errors. Finally, intraoperative integration is assessed though
cadaveric experiments. Improper white balancing leads to increases in all
quantitative and qualitative errors. Synthetic references achieve median
pixel-by-pixel errors lower than 6.5% and produce similar reconstructions and
errors to an ideal reference. The algorithm integrated well into surgical
workflow, achieving median pixel-by-pixel errors of 4.77%, while maintaining
good spectral and color reconstruction.Comment: 22 pages, 10 figure
- …
