116 research outputs found

    A line-balancing strategy for designing flexible assembly systems

    Full text link
    We present a rough-cut analysis tool that quickly determines a few potential cost-effective designs at the initial design stage of flexible assembly systems (FASs) prior to a detailed analysis such as simulation. It uses quantitative methods for selecting and configuring the components of an FAS suitable for medium to high volumes of several similar products. The system is organized as a series of assembly stations linked with an automated material-handling system moving parts in a unidirectional flow. Each station consists of a single machine or of identical parallel machines. The methods exploit the ability of flexible hardware to switch almost instantaneously from product to product. Our approach is particularly suitable where the product mix is expected to be stable, since we combine the hardware-configuration phase with the task-allocation phase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45513/1/10696_2004_Article_BF00167513.pd

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    A study of FMS part type selection approaches for short-term production planning

    Full text link
    This research compares seven approaches from the literature to the selection of part types for simultaneous production over the next time horizon. A flexible approach to the selection of part types and the simultaneous determination of their mix ratios so as to balance aggregate machine workloads is presented. Constraints on tool magazine capacity are considered. Simulation studies are conducted on realistic, detailed models of flexible flow systems (FFSs) configured as pooled machines of equal sizes. The simulated settings are constructed to evaluate the impact of such factors as blocking, transportation, buffer utilizations, and fixture requirements and limitations of various types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45438/1/10696_2004_Article_BF00713157.pd

    Staffing decisions for heterogeneous workers with turnover

    Full text link
    In this paper we consider a firm that employs heterogeneous workers to meet demand for its product or service. Workers differ in their skills, speed, and/or quality, and they randomly leave, or turn over. Each period the firm must decide how many workers of each type to hire or fire in order to meet randomly changing demand forecasts at minimal expense. When the number of workers of each type can by continuously varied, the operational cost is jointly convex in the number of workers of each type, hiring and firing costs are linear, and a random fraction of workers of each type leave in each period, the optimal policy has a simple hire- up-to/fire-down-to structure. However, under the more realistic assumption that the number of workers of each type is discrete, the optimal policy is much more difficult to characterize, and depends on the particular notion of discrete convexity used for the cost function. We explore several different notions of discrete convexity and their impact on structural results for the optimal policy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45844/1/186_2005_Article_33.pd

    DNA methylation biomarkers of future health outcomes in children.

    Get PDF
    Biomarkers which predict future health outcomes are key to the goals of precision health. Such biomarkers do not have to be involved in the causal pathway of a disease, and their performance is best assessed using statistical tests of clinical performance and evaluation of net health impact. DNA methylation is the most commonly studied epigenetic process and represents a potential biomarker of future health outcomes. We review 25 studies in non-oncological paediatric conditions where DNA methylation biomarkers of future health outcomes are assessed. Whilst a number of positive findings have been described, the body of evidence is severely limited by issues with outcome measures, tissue-specific samples, accounting for sample cell type heterogeneity, lack of appropriate statistical testing, small effect sizes, limited validation, and no assessment of net health impact. Future studies should concentrate on careful study design to overcome these issues, and integration of DNA methylation data with other 'omic', clinical, and environmental data to generate the most clinically useful biomarkers of paediatric disease
    corecore