937 research outputs found

    Fall versus Spring Nitrogen Fertilization on Pasture

    Get PDF
    Iowa livestock producers managing drought-stressed pastures wanted to know if grass-based pastures would recover more quickly or produce more forage by applying nitrogen to pastures in the fall versus their traditional spring application management. A pasture fertilization study was conducted on cool-season grassbased pastures at the Iowa State University Armstrong, Neely-Kinyon, and McNay Research and Demonstration Farms. Urea was hand applied at rates of 0, 22.5, 45, 66.7, and 90 lbs/acre to small plots at each site in October 2000. Some plots received 22.5 and 45 lbs/acre of N at the fall application date as the first half of a split application to total 45 and 90 lb/acre of N. The same N rates were applied to different plots and the remainder of the split application treatments was applied in March 2001. Dry matter yield was determined in mid-May 2001. Yields at the Neely-Kinyon and McNay farms were similar, and slightly higher than those at the Armstrong farm. Yield response to nitrogen application rates was positive and linear for each additional unit of nitrogen applied. The average total increase was about 38% for the first 45 lbsN/acre and about 81% for the 90 lbN/acre rates. There was no statistically significant or consistent relation between pasture yield increase and timing of nitrogen application across the three sites, but there were minor differences among sites. The trend, however, indicated that greater yields frequently were obtained from the early spring application treatments. Data was not collected to assess forage nutritive quality or stand density, however, both could be of value and importance to the long-term sustainability of a foragelivestock enterprise. These results indicate that for the period studied, there was no consistent advantage in applying nitrogen fertilizer to grass-based pastures in late fall or splitting the total application between fall and spring as compared to making traditional spring nitrogen applications

    Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. <it>Staphylococcus aureus </it>is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.</p> <p>Results</p> <p>The impact of <it>S. aureus </it>soluble products in biofilm-conditioned medium (BCM) or in planktonic-conditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic <it>S. aureus </it>was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, <it>S. aureus </it>biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.</p> <p>Conclusions</p> <p>Collectively the results indicate that <it>S. aureus </it>biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.</p

    Integrating the Use of Spring- and Fall-Calving Beef Cows in a Year-round Grazing System (A Progress Report)

    Get PDF
    Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems

    Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced Murine Model of Asthma

    Get PDF
    Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered saline)PBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL) cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01), reduction in BAL eosinophils (P ≤ 0.02) and IL-13 concentrations (P ≤ 0.04) as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001) and CD8+ T cells (P ≤ 0.0001) in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions

    Evaluation of Year-round Forage Management Systems for Spring- and Fall-Calving Beef Cows (A Progress Report)

    Get PDF
    A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P \u3e .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P \u3c .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P \u3c .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively

    Integration of Year-round Forage Management Systems for Spring-calving and Fall-calving Beef Cows (A Progress Report)

    Get PDF
    Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P \u3c .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P \u3e .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P \u3c .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P \u3c .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P \u3e .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P \u3e .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P \u3c .05)

    Control and elimination of schistosomiasis as a public health problem: thresholds fail to differentiate schistosomiasis morbidity prevalence in children

    Get PDF
    BACKGROUND: Current World Health Organization guidelines utilize prevalence of heavy-intensity infections (PHIs), that is, ≥50 eggs per 10 mL of urine for Schistosoma haematobium and ≥400 eggs per gram of stool for S. mansoni, to determine whether a targeted area has controlled schistosomiasis morbidity or eliminated schistosomiasis as a public health problem. The relationship between these PHI categories and morbidity is not well understood. METHODS: School-age participants enrolled in schistosomiasis monitoring and evaluation cohorts from 2003 to 2008 in Burkina Faso, Mali, Niger, Tanzania, Uganda, and Zambia were surveyed for infection and morbidity at baseline and after 1 and 2 rounds of preventive chemotherapy. Logistic regression was used to compare morbidity prevalence among participants based on their school's PHI category. RESULTS: Microhematuria levels were associated with the S. haematobium PHI categories at all 3 time points. For any other S. haematobium or S. mansoni morbidity that was measured, PHI categories did not differentiate morbidity prevalence levels consistently. CONCLUSIONS: These analyses suggest that current PHI categorizations do not differentiate the prevalence of standard morbidity markers. A reevaluation of the criteria for schistosomiasis control is warranted

    Use of a tablet-based system to perform abdominal ultrasounds in a field investigation of schistosomiasis-related morbidity in western Kenya

    Get PDF
    Chronic intestinal schistosomiasis can cause severe hepatosplenic disease and is a neglected tropical disease of public health importance in sub-Saharan Africa, including Kenya. Although the goal of control programs is to reduce morbidity, milestones for program performance focus on reductions in prevalence and intensity of infection, rather than actual measures of morbidity. Using ultrasound to measure hepatosplenic disease severity is an accepted method of determining schistosomiasis-related morbidity; however, ultrasound has not historically been considered a field-deployable tool because of equipment limitations and unavailability of expertise. A point-of-care tablet-based ultrasound system was used to perform abdominal ultrasounds in a field investigation of schistosomiasis-related morbidity in western Kenya; during the study, other pathologies and pregnancies were also identified via ultrasound, and participants referred to care. Recent technological advances may make it more feasible to implement ultrasound as part of a control program and can also offer important benefits to the community

    Defining elimination as a public health problem for schistosomiasis control programmes: beyond prevalence of heavy-intensity infections

    Get PDF
    WHO's 2021?30 road map for neglected tropical diseases (NTDs) outlines disease-specific and cross-cutting targets for the control, elimination, and eradication of NTDs in affected countries. For schistosomiasis, the criterion for elimination as a public health problem (EPHP) is defined as less than 1% prevalence of heavy-intensity infections (ie, ≥50 Schistosoma haematobium eggs per 10 mL of urine or ≥400 Schistosoma mansoni eggs per g of stool). However, we believe the evidence supporting this definition of EPHP is inadequate and the shifting distribution of schistosomiasis morbidity towards more subtle, rather than severe, morbidity in the face of large-scale control programmes requires guidelines to be adapted. In this Viewpoint, we outline the need for more accurate measures to develop a robust evidence-based monitoring and evaluation framework for schistosomiasis. Such a framework is crucial for achieving the goal of widespread EPHP of schistosomiasis and to meet the WHO road map targets. We encourage use of overall prevalence of schistosome infection (instead of the prevalence of heavy-intensity infections), development of species-dependent and age-dependent morbidity markers, and construction of a standardised monitoring and evaluation protocol
    • …
    corecore