121 research outputs found

    Decoherence in the dynamical quantum phase transition of the transverse Ising chain

    Full text link
    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system.Comment: 4 pages, 1 figure, minor clarification

    Emergence of coherence in the Mott--superfluid quench of the Bose-Hubbard model

    Full text link
    We study the quench from the Mott to the superfluid phase in the Bose-Hubbard model and investigate the spatial-temporal growth of phase coherence, i.e., phase locking between initially uncorrelated sites. To this end, we establish a hierarchy of correlations via a controlled expansion into inverse powers of the coordination number 1/Z1/Z. It turns out that the off-diagonal long-range order spreads with a constant propagation speed, forming local condensate patches, whereas the phase correlator follows a diffusion-like growth rate.Comment: 4 page

    Quantum simulator for the Ising model with electrons floating on a helium film

    Full text link
    We propose a physical setup that can be used to simulate the quantum dynamics of the Ising model with present-day technology. Our scheme consists of electrons floating on superfluid helium which interact via Coulomb forces. In the limit of low temperatures, the system will stay near the ground state where its Hamiltonian is equivalent to the Ising model and thus shows phenomena such as quantum criticality. Furthermore, the proposed design could be generalized in order to study interacting field theories (e.g., λϕ4\lambda\phi^4) and adiabatic quantum computers.Comment: 4 page

    Bogoliubov theory of quantum correlations in the time-dependent Bose-Hubbard model

    Full text link
    By means of an adapted mean-field expansion for large fillings n≫1n\gg1, we study the evolution of quantum fluctuations in the time-dependent Bose-Hubbard model, starting in the superfluid state and approaching the Mott phase by decreasing the tunneling rate or increasing the interaction strength in time. For experimentally relevant cases, we derive analytical results for the temporal behavior of the number and phase fluctuations, respectively. This allows us to calculate the growth of the quantum depletion and the decay of off-diagonal long-range order. We estimate the conditions for the observability of the time dependence in the correlation functions in the experimental setups with external trapping present. Finally, we discuss the analogy to quantum effects in the early universe during the inflationary epoch.Comment: 11 pages of RevTex4, 2 figures; significantly extended, with several analytically solvable cases added, to appear in Physical Review

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure

    Localised projective measurement of a relativistic quantum field in non-inertial frames

    Full text link
    We propose a scheme to study the effect of motion on measurements of a quantum field carried out by a finite-size detector. We introduce a model of projective detection of a localised field mode in an arbitrary reference frame. We apply it to extract vacuum entanglement by a pair of counter-accelerating detectors and to estimate the Unruh temperature of a single accelerated detector. The introduced method allows us to directly relate the observed effects with the instantaneous proper acceleration of the detector.Comment: 5 pages, 2 figures. v2 Significant increase in the detail level regarding the motivation of the detector mode

    Decoherence in a dynamical quantum phase transition

    Full text link
    Motivated by the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grovers search algorithm, which displays a first order quantum phase transition. For site-independent and site-dependent coupling strengths as well as different operator couplings, the results show that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits). This might limit the scalability of the corresponding adiabatic quantum algorithm.Comment: 14 pages, 9 figure

    Dynamical Casimir effect at finite temperature

    Get PDF
    Thermal effects on the creation of particles under the influence of time-dependent boundary conditions are investigated. The dominant temperature correction to the energy radiated by a moving mirror is derived by means of response theory. For a resonantly vibrating cavity the thermal effect on the number of created photons is obtained non-perturbatively. Finite temperatures can enhance the pure vacuum effect by several orders of magnitude. The relevance of finite temperature effects for the experimental verification of the dynamical Casimir effect is addressed.Comment: 9 LaTex page

    Momentum dependence in the dynamically assisted Sauter-Schwinger effect

    Full text link
    Recently it has been found that the superposition of a strong and slow electric field with a weaker and faster pulse can significantly enhance the probability for non-perturbative electron-positron pair creation out of the vacuum -- the dynamically assisted Sauter-Schwinger effect. Via the WKB method, we estimate the momentum dependence of the pair creation probability and compare it to existing numerical results. Besides the theoretical interest, a better understanding of this pair creation mechanism should be helpful for the planned experiments aiming at its detection.Comment: 4 pages RevTeX, 1 figur
    • …
    corecore