1,044 research outputs found

    Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles

    Get PDF
    Hydrophilic drug delivery still remains a challenge; this either being attributed to the fragility and poor cellular penetration of macromolecules, or to the unsuitable pharmacokinetics and toxicity of small drugs, for instance anticancer agents. By offering more favourable pharmacokinetics and protection of the drug, encapsulation in polymer nanoparticles constitutes an attractive possibility to overcome these problems. This review provides an overview of the strategies that have been developed for encapsulating hydrophilic molecules in polymer-containing nanoparticles, e.g. nanospheres and nanocapsules. Polymer nanospheres are loaded either by drug entrapment (by pH modification, use of reverse micelles or the addition of a polyanion) and generally produce a poor level of entrapment efficiency, or molecule sorption onto the nanosphere surface (by pH modification, use of high drug concentration, or ion-pair formation) with the drawbacks of a less-well protected drug from degradation and a faster drug release. Another strategy consists of the use of aqueous-core nanocapsules, generally surrounded by a thin polymer layer, in which hydrophilic molecules are directly solubilised in internal water, and are thus entrapped within the nanocapsule core, assuring drug protection and sustained release. Nanocapsules require less polymer compared to nanospheres; on the other hand, when the drug is entrapped, it has to be added before or during the formulation process, and is thus likely to be degraded. Overall, drug encapsulation in polymer nanoparticles provides a better pharmacokinetic profile and bioavailability, enhanced anticancer activity, reduced drug toxicity and modified drug distribution as compared to free drugs

    Dewetting of Glassy Polymer Films

    Full text link
    Dynamics and morphology of hole growth in a film of power hardening viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At short-times the growth is exponential and depends on the initial hole size. At long-times, for n > 1/3, the growth is exponential with a different exponent. However, for n < 1/3, the hole growth slows; the hole radius approaches an asymptotic value as time tends to infinity. The rim shape is highly asymmetric, the height of which has a power law dependence on the hole radius (exponent close to unity for 0.25 < n < 0.4). The above results explain recent intriguing experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe

    Cell wall modifications during conidial maturation of the human pathogenic fungus Pseudallescheria boydii

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape from the host immune defenses.The study was funded by “Région Pays de la Loire” in the frame of “Myco-AFM” research program). BED was supported by the Dutch Virgo Consortium (FES0908, NGI 050-060-452) and CAPES/BRASIL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Benefits and barriers in the design of harmonized access agreements for international data sharing

    Get PDF
    In the past decade, there has been a surge in the number of sensitive human genomic and health datasets available to researchers via Data Access Agreements (DAAs) and managed by Data Access Committees (DACs). As this form of sharing increases, so do the challenges of achieving a reasonable level of data protection, particularly in the context of international data sharing. Here, we consider how excessive variation across DAAs can hinder these goals, and suggest a core set of clauses that could prove useful in future attempts to harmonize data governance
    corecore