6 research outputs found

    A distributed task allocation algorithm for a multi-robot system in healthcare facilities

    No full text
    Various ambient assisted living (AAL) technologies have been proposed for improving the living conditions of elderly people. One of them is to introduce robots to reduce dependency on support staff. The tasks commonly encountered in a healthcare facility such as a care home for elderly people are heterogeneous and are of different priorities. A care home environment is also dynamic and new emergency priority tasks, which if not attended shortly may result in fatal situations, may randomly appear. Therefore, it is better to use a multi-robot system (MRS) consisting of heterogeneous robots than designing a single robot capable of doing all tasks. An efficient task allocation algorithm capable of handling the dynamic nature of the environment, the heterogeneity of robots and tasks, and the prioritisation of tasks is required to reap the benefits of introducing an MRS. This paper proposes Consensus Based Parallel Auction and Execution (CBPAE), a distributed algorithm for task allocation in a system of multiple heterogeneous autonomous robots deployed in a healthcare facility, based on auction and consensus principles. Unlike many of the existing market based task allocation algorithms, which use a time extended allocation of tasks before the actual execution is initialised, the proposed algorithm uses a parallel auction and execution framework, and is thus suitable for highly dynamic real world environments. The robots continuously resolve any conflicts in the bids on tasks using inter-robot communication and a consensus process in each robot before a task is assigned to a robot. We demonstrate the effectiveness of the CBPAE by comparing its simulation results with those of an existing market based distributed multi-robot task allocation algorithm and through experiments on real robots

    Reports of the AAAI 2011 conference workshops

    No full text
    The AAAI-11 workshop program was held Sunday and Monday, August 7-18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; Artifiicial Intelligence for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory, 2010; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action, and Language; Lifelong Learning from Sensorimotor Experience; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events
    corecore