106 research outputs found

    Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Nanotheranostics, which combines optical multiplexed disease detection with therapeutic monitoring in a single modality, has the potential to propel the field of nanomedicine toward genuine personalized medicine. Currently employed mainstream modalities using gold nanoparticles (AuNPs) in diagnosis and treatment are limited by a lack of specificity and potential issues associated with systemic toxicity. Light-mediated nanotheranostics offers a relatively non-invasive alternative for cancer diagnosis and treatment by using AuNPs of specific shapes and sizes that absorb near infrared (NIR) light, inducing plasmon resonance for enhanced tumor detection and generating localized heat for tumor ablation. Over the last decade, significant progress has been made in the field of nanotheranostics, however the main biological and translational barriers to nanotheranostics leading to a new paradigm in anti-cancer nanomedicine stem from the molecular complexities of cancer and an incomplete mechanistic understanding of utilization of Au-NPs in living systems. This work provides a comprehensive overview on the biological, physical and translational barriers facing the development of nanotheranostics. It will also summarise the recent advances in engineering specific AuNPs, their unique characteristics and, importantly, tunability to achieve the desired optical/photothermal properties.Engineering and Physical Sciences Research Council (EPSRC

    Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments

    Get PDF
    Funding: Cancer Research UK. Research at The Institute of Cancer Research is supported by Cancer Research UK under Programme C33589/A19727. Peter Ziegenhein is supported by Cancer Research UK under Programme C33589/A19908.Combined radiotherapy and hyperthermia offer great potential for the successful treatment of radio-resistant tumours through thermo-radiosensitization. Tumour response heterogeneity, due to intrinsic, or micro-environmentally induced factors, may greatly influence treatment outcome, but is difficult to account for using traditional treatment planning approaches. Systems oncology simulation, using mathematical models designed to predict tumour growth and treatment response, provides a powerful tool for analysis and optimization of combined treatments. We present a framework that simulates such combination treatments on a cellular level. This multiscale hybrid cellular automaton simulates large cell populations (up to 107 cells) in vitro, while allowing individual cell-cycle progression, and treatment response by modelling radiation-induced mitotic cell death, and immediate cell kill in response to heating. Based on a calibration using a number of experimental growth, cell cycle and survival datasets for HCT116 cells, model predictions agreed well (R2 > 0.95) with experimental data within the range of (thermal and radiation) doses tested (0–40 CEM43, 0–5 Gy). The proposed framework offers flexibility for modelling multimodality treatment combinations in different scenarios. It may therefore provide an important step towards the modelling of personalized therapies using a virtual patient tumour.Publisher PDFPeer reviewe

    An Electrode Array for Limiting Blood Loss During Liver Resection: Optimization via Mathematical Modeling

    Get PDF
    Liver resection is the current standard treatment for patients with both primary and metastatic liver cancer. The principal causes of morbidity and mortality after liver resection are related to blood loss (typically between 0.5 and 1 L), especially in cases where transfusion is required. Blood transfusions have been correlated with decreased long-term survival, increased risk of perioperative mortality and complications. The goal of this study was to evaluate different designs of a radiofrequency (RF) electrode array for use during liver resection. The purpose of this electrode array is to coagulate a slice of tissue including large vessels before resecting along that plane, thereby significantly reducing blood loss. Finite Element Method models were created to evaluate monopolar and bipolar power application, needle and blade shaped electrodes, as well as different electrode distances. Electric current density, temperature distribution, and coagulation zone sizes were measured. The best performance was achieved with a design of blade shaped electrodes (5 × 0.1 mm cross section) spaced 1.5 cm apart. The electrodes have power applied in bipolar mode to two adjacent electrodes, then switched sequentially in short intervals between electrode pairs to rapidly heat the tissue slice. This device produces a ~1.5 cm wide coagulation zone, with temperatures over 97 ºC throughout the tissue slice within 3 min, and may facilitate coagulation of large vessels

    Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    Get PDF
    Image-guided focussed ultrasound (FUS) ablation is a non-invasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I studies have proven MRI-guided and US-guided FUS ablation of breast cancer to be technically feasible and safe. We provide an overview of studies assessing the efficacy of FUS for breast tumour ablation as measured by percentages of complete tumour necrosis. Successful ablation ranged from 20% to 100%, depending on FUS system type, imaging technique, ablation protocol, and patient selection. Specific issues related to FUS ablation of breast cancer, such as increased treatment time for larger tumours, size of ablation margins, methods used for margin assessment and residual tumour detection after FUS ablation, and impact of FUS ablation on sentinel node procedure are presented. Finally, potential future applications of FUS for breast cancer treatment such as FUS-induced anti-tumour immune response, FUS-mediated gene transfer, and enhanced drug delivery are discussed. Currently, breast-conserving surgery remains the gold standard for breast cancer treatment
    corecore