1,721 research outputs found
A minimum hypothesis explanation for an IMF with a lognormal body and power law tail
We present a minimum hypothesis model for an IMF that resembles a lognormal
distribution at low masses but has a distinct power-law tail. Even if the
central limit theorem ensures a lognormal distribution of condensation masses
at birth, a power-law tail in the distribution arises due to accretion from the
ambient cloud, coupled with a non-uniform (exponential) distribution of
accretion times.Comment: 2 pages, 1 figure, to appear in IMF@50, eds. E. Corbelli, F. Palla,
and H. Zinnecker, Kluwer, Astrophysics and Space Science Librar
Screening of Nuclear Reactions in the Sun and Solar Neutrinos
We quantitatively determine the effect and the uncertainty on solar neutrino
production arising from the screening process. We present predictions for the
solar neutrino fluxes and signals obtained with different screening models
available in the literature and by using our stellar evolution code. We explain
these numerical results in terms of simple laws relating the screening factors
with the neutrino fluxes. Futhermore we explore a wider range of models for
screening, obtained from the Mitler model by introducing and varying two
phenomenological parameters, taking into account effects not included in the
Mitler prescription. Screening implies, with respect to a no-screening case, a
central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium
(Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal.
We also find that uncertainties due to the screening effect ar at the level of
1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding
3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have
replaced the previous paper with a uuencoded file (the text is the same) for
any problem please write to [email protected]
The stability of the spectator, Dirac, and Salpeter equations for mesons
Mesons are made of quark-antiquark pairs held together by the strong force.
The one channel spectator, Dirac, and Salpeter equations can each be used to
model this pairing. We look at cases where the relativistic kernel of these
equations corresponds to a time-like vector exchange, a scalar exchange, or a
linear combination of the two. Since the model used in this paper describes
mesons which cannot decay physically, the equations must describe stable
states. We find that this requirement is not always satisfied, and give a
complete discussion of the conditions under which the various equations give
unphysical, unstable solutions
Nuclear Reaction Rates in a Plasma
The problem of determining the effects of the surrounding plasma on nuclear
reaction rates in stars is formulated ab initio, using the techniques of
quantum statistical mechanics. We derive a result that expresses the complete
effects of Coulomb barrier penetration and of the influence of the surrounding
plasma in terms of matrix elements of well defined operators. We find that
possible "dynamical screening" effects that have been discussed in the
literature are absent. The form of our results suggests that an approach that
relies on numerical calculations of the correlation functions in a classical
Coulomb gas, followed by construction of an effective two body potential and a
quantum barrier penetration calculation, will miss physics that is as important
as the physics that it includes.Comment: 66 pages, revtex, Errors Fixed, Explanation Adde
The charmonium and bottomonium mass spectroscopy with a simple approximaton of the kinetic term
In this paper we propose a particular description of meson spectroscopy, with
emphasis in heavy bound states like charmonia and bottomonia, after working on
the main aspects of the construction of an effective potential model. We use
the prerogatives from ``soft QCD'' to determine the effective potential terms,
establishing the asymptotic Coulomb term from one gluon exchange approximation.
At the same time, a linear confinement term is introduced in agreement with QCD
and phenomenological prescription. The main aspect of this work is the
simplification in the calculation, consequence of a precise and simplified
description of the kinetic term of the Hamiltonian. With this proposition we
perform the calculations of mass spectroscopy for charmonium and bottomonium
mesons and we discuss the real physical possibilities of developing a
generalized potential model, its possible advantages relative to experimental
parameterization and complexity in numerical calculations
Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds
(Abridged) We present a new method for detecting and measuring compact
sources in conditions of intense, and highly variable, fore/background. While
all most commonly used packages carry out the source detection over the signal
image, our proposed method builds from the measured image a "curvature" image
by double-differentiation in four different directions. In this way point-like
as well as resolved, yet relatively compact, objects are easily revealed while
the slower varying fore/background is greatly diminished. Candidate sources are
then identified by looking for pixels where the curvature exceeds, in absolute
terms, a given threshold; the methodology easily allows us to pinpoint
breakpoints in the source brightness profile and then derive reliable guesses
for the sources extent. Identified peaks are fit with 2D elliptical Gaussians
plus an underlying planar inclined plateau, with mild constraints on size and
orientation. Mutually contaminating sources are fit with multiple Gaussians
simultaneously using flexible constraints. We ran our method on simulated
large-scale fields with 1000 sources of different peak flux overlaid on a
realistic realization of diffuse background. We find detection rates in excess
of 90% for sources with peak fluxes above the 3-sigma signal noise limit; for
about 80% of the sources the recovered peak fluxes are within 30% of their
input values.Comment: Accepted on A&
Theoretical Uncertainties in Red Giant Branch Evolution: The Red Giant Branch Bump
A Monte Carlo simulation exploring uncertainties in standard stellar
evolution theory on the red giant branch of metal-poor globular clusters has
been conducted. Confidence limits are derived on the absolute V-band magnitude
of the bump in the red giant branch luminosity function (M_v,b) and the excess
number of stars in thebump, R_b. The analysis takes into account uncertainties
in the primordial helium abundance, abundance of alpha-capture elements,
radiative and conductive opacities, nuclear reaction rates, neutrino energy
losses, the treatments of diffusion and convection, the surface boundary
conditions, and color transformations.
The uncertainty in theoretical values for the red giant bump magnitude varies
with metallicity between +0.13/-0.12 mag at [Fe/H] = -2.4 and +0.23/-0.21 mag
at [Fe/H] = -1.0 to 0.50 at [Fe/H] =
-1.0. These theoretical values for R_b are in agreement with observations.Comment: 30 pages, 6 figures. To appear in Ap
Instantaneous Bethe-Salpeter equation: utmost analytic approach
The Bethe-Salpeter formalism in the instantaneous approximation for the
interaction kernel entering into the Bethe-Salpeter equation represents a
reasonable framework for the description of bound states within relativistic
quantum field theory. In contrast to its further simplifications (like, for
instance, the so-called reduced Salpeter equation), it allows also the
consideration of bound states composed of "light" constituents. Every
eigenvalue equation with solutions in some linear space may be (approximately)
solved by conversion into an equivalent matrix eigenvalue problem. We
demonstrate that the matrices arising in these representations of the
instantaneous Bethe-Salpeter equation may be found, at least for a wide class
of interactions, in an entirely algebraic manner. The advantages of having the
involved matrices explicitly, i.e., not "contaminated" by errors induced by
numerical computations, at one's disposal are obvious: problems like, for
instance, questions of the stability of eigenvalues may be analyzed more
rigorously; furthermore, for small matrix sizes the eigenvalues may even be
calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.
ESC NN-Potentials in Momentum Space. I. PS-PS Exchange Potentials
A momentum space representation is derived for the Nijmegen
Extended-Soft-Core (ESC) interactions. The partial wave projection of this
representation is carried through, in principle for Two-Meson-Exchange (TME) in
general. Explicit results for the momentum space partial wave NN-potentials
from PS-PS-Exchange are given.Comment: 23 pages, 2 PostScript figures, revtex
Systematic variation of central mass density slope in early-type galaxies
We study the total density distribution in the central regions (
effective radius, ) of early-type galaxies (ETGs), using data from
the SPIDER survey. We model each galaxy with two components (dark matter halo +
stars), exploring different assumptions for the dark matter (DM) halo profile,
and leaving stellar mass-to-light () ratios as free fitting
parameters to the data. For a Navarro et al. (1996) profile, the slope of the
total mass profile is non-universal. For the most massive and largest ETGs, the
profile is isothermal in the central regions (), while for
the low-mass and smallest systems, the profile is steeper than isothermal, with
slopes similar to those for a constant-M/L profile. For a concentration-mass
relation steeper than that expected from simulations, the correlation of
density slope with mass tends to flatten. Our results clearly point to a
"non-homology" in the total mass distribution of ETGs, which simulations of
galaxy formation suggest may be related to a varying role of dissipation with
galaxy mass.Comment: 3 pages, 1 figure, to appear on the refereed Proceeding of the "The
Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on
25th-28th november 2014, to be published on Astrophysics and Space Science
Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic
- …
