1,074 research outputs found

    On Size and Shape of the Average Meson Fields in the Semibosonized Nambu & Jona-Lasinio Model

    Full text link
    We consider a two-flavor Nambu \& Jona-Lasinio model in Hartree approximation involving scalar-isoscalar and pseudoscalar-isovector quark-quark interactions. Average meson fields are defined by minimizing the effective Euklidean action. The fermionic part of the action, which contains the full Dirac sea, is regularized within Schwinger's proper-time scheme. The meson fields are restricted to the chiral circle and to hedgehog configurations. The only parameter of the model is the constituent quark mass MM which simultaneously controls the regularization. We evaluate meson and quark fields self-consistently in dependence on the constituent quark mass. It is shown that the self-consistent fields do practically not depend on the constituent quark mass. This allows us to define a properly parameterized reference field which for physically relevant constituent masses can be used as a good approximation to the exactly calculated one. The reference field is chosen to have correct behaviour for small and large radii. To test the agreement between self-consistent and reference fields we calculate several observables like nucleon energy, mean square radius, axial-vector constant and delta-nucleon mass splitting in dependence on the constituent quark mass. The agreement is found to be very well. Figures available on request.Comment: 12 pages (LATEX), 3 figures available on request, report FZR 93-1

    ATP-dependent chromatosome remodeling

    Get PDF
    Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent `remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin

    Ground State Structure and Low Temperature Behaviour of an Integrable Chain with Alternating Spins

    Full text link
    In this paper we continue the investigation of an anisotropic integrable spin chain, consisting of spins s=1s=1 and s=12s=\frac{1}{2}, started in our paper \cite{meissner}. The thermodynamic Bethe ansatz is analysed especially for the case, when the signs of the two couplings cˉ\bar{c} and c~\tilde{c} differ. For the conformally invariant model (cˉ=c~\bar{c}=\tilde{c}) we have calculated heat capacity and magnetic susceptibility at low temperature. In the isotropic limit our analysis is carried out further and susceptibilities are calculated near phase transition lines (at T=0T=0).Comment: 22 pages, LaTeX, uses ioplppt.sty and PicTeX macro

    Towards robotizing the processes of testing lithium-ion batteries

    Get PDF
    To boost the circular economy of the electric vehicle battery industry, an accurate assessment of the state of health of retired batteries is essential to assign them an appropriate value in the post automotive market and material degradation before recycling. In practice, the advanced battery testing techniques are usually limited to laboratory benches at the battery cell level and hardly used in the industrial environment at the battery module or pack level. This necessitates developing battery recycling facilities that can handle the assessment and testing undertakings for many batteries with different form factors. Towards this goal, for the first time, this article proposes proof of concept to automate the process of collecting the impedance data from a retired 24kWh Nissan LEAF battery module. The procedure entails the development of robot end-of-arm tooling that was connected to a Potentiostat. In this study, the robot was guided towards a fixed battery module using visual servoing technique, and then impedance control system was applied to create compliance between the end-of-arm tooling and the battery terminals. Moreover, an alarm system was designed and mounted on the robot’s wrist to check the connectivity between a Potentiostat and the battery terminals. Subsequently, the electrochemical impedance spectroscopy test was run over a wide range of frequencies at a 5% state of charge. The electrochemical impedance spectroscopy data obtained from the automated test is validated by means of the three criteria (linearity, causality and stability) and compared with manually collected measurements under the same conditions. Results suggested the proposed automated configuration can accurately accomplish the electrochemical impedance spectroscopy test at the battery module level with no human intervention, which ensures safety and allows this advanced testing technique to be adopted in grading retired battery modules

    Why Social Enterprises Are Asking to Be Multi-stakeholder and Deliberative: An Explanation around the Costs of Exclusion.

    Get PDF
    The study of multi-stakeholdership (and multi-stakeholder social enterprises in particular) is only at the start. Entrepreneurial choices which have emerged spontaneously, as well as the first legal frameworks approved in this direction, lack an adequate theoretical support. The debate itself is underdeveloped, as the existing understanding of organisations and their aims resist an inclusive, public interest view of enterprise. Our contribution aims at enriching the thin theoretical reflections on multi-stakeholdership, in a context where they are already established, i.e. that of social and personal services. The aim is to provide an economic justification on why the governance structure and decision-making praxis of the firm needs to account for multiple stakeholders. In particular with our analysis we want: a) to consider production and the role of firms in the context of the “public interest” which may or may not coincide with the non-profit objective; b) to ground the explanation of firm governance and processes upon the nature of production and the interconnections between demand and supply side; c) to explain that the costs associated with multi-stakeholder governance and deliberation in decision-making can increase internal efficiency and be “productive” since they lower internal costs and utilise resources that otherwise would go astray. The key insight of this work is that, differently from major interpretations, property costs should be compared with a more comprehensive range of costs, such as the social costs that emerge when the supply of social and personal services is insufficient or when the identification of aims and means is not shared amongst stakeholders. Our model highlights that when social costs derived from exclusion are high, even an enterprise with costly decisional processes, such as the multistakeholder, can be the most efficient solution amongst other possible alternatives

    Ground state and low excitations of an integrable chain with alternating spins

    Get PDF
    An anisotropic integrable spin chain, consisting of spins s=1s=1 and s=12s=\frac{1}{2}, is investigated \cite{devega}. It is characterized by two real parameters cˉ\bar{c} and c~\tilde{c}, the coupling constants of the spin interactions. For the case cˉ<0\bar{c}<0 and c~<0\tilde{c}<0 the ground state configuration is obtained by means of thermodynamic Bethe ansatz. Furthermore the low excitations are calculated. It turns out, that apart from free magnon states being the holes in the ground state rapidity distribution, there exist bound states given by special string solutions of Bethe ansatz equations (BAE) in analogy to \cite{babelon}. The dispersion law of these excitations is calculated numerically.Comment: 16 pages, LaTeX, uses ioplppt.sty and PicTeX macro

    Scaling laws and simulation results for the self--organized critical forest--fire model

    Full text link
    We discuss the properties of a self--organized critical forest--fire model which has been introduced recently. We derive scaling laws and define critical exponents. The values of these critical exponents are determined by computer simulations in 1 to 8 dimensions. The simulations suggest a critical dimension dc=6d_c=6 above which the critical exponents assume their mean--field values. Changing the lattice symmetry and allowing trees to be immune against fire, we show that the critical exponents are universal.Comment: 12 pages, postscript uuencoded, figures included, to appear in Phys. Rev.
    corecore