68 research outputs found
Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts
Copper plays a vital role in fundamental cellular functions, and its concentration in the cell must be tightly regulated, as dysfunction of copper homeostasis is linked to severe neurological diseases and cancer. This review provides a compendium of current knowledge regarding the mechanism of copper transfer from the blood system to the Golgi apparatus; this mechanism involves the copper transporter hCtr1, the metallochaperone Atox1, and the ATPases ATP7A/B. We discuss key insights regarding the structural and functional properties of the hCtr1-Atox1-ATP7B cycle, obtained from diverse studies relying on distinct yet complementary biophysical, biochemical, and computational methods. We further address the mechanistic aspects of the cycle that continue to remain elusive. These knowledge gaps must be filled in order to be able to harness our understanding of copper transfer to develop therapeutic approaches with the capacity to modulate copper metabolism
Unraveling the impact of cysteine-to-serine mutations on the structural and functional properties of Cu(I)-binding proteins
Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems
Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study
Atox1 is a human copper metallochaperone that is responsible for transferring copper ions from the main human copper transporter, hCtr1, to ATP7A/B in the Golgi apparatus. Atox1 interacts with the Ctr1 C-terminal domain as a dimer, although it transfers the copper ions to ATP7A/B in a monomeric form. The copper binding site in the Atox1 dimer involves Cys12 and Cys15, while Lys60 was also suggested to play a role in the copper binding. We recently showed that Atox1 can adopt various conformational states, depending on the interacting protein. In the current study, we apply EPR experiments together with hybrid quantum mechanics-molecular mechanics molecular dynamics simulations using a recently developed semiempirical density functional theory approach, to better understand the effect of Atox1's conformational states on copper coordination. We propose that the flexibility of Atox1 occurs owing to protonation of one or more of the cysteine residues, and that Cys15 is an important residue for Atox1 dimerization, while Cys12 is a critical residue for Cu(I) binding. We also show that Lys60 electrostatically stabilizes the Cu(I)-Atox1 dimer
Molecular dynamics simulation of the early stages of the synthesis of periodic mesoporous silica
We present results of detailed atomistic modeling of the early stages of the synthesis of periodic mesoporous silica using molecular dynamics. Our simulations lead to the proposal of a mechanism that validates several previous experimental and modeling studies and answers many controversial issues regarding the synthesis of mesoporous silicas. In particular, we show that anionic silicates interact very strongly with cationic surfactants and, significantly adsorb on the surface of micelles, displacing a fraction of previously bound bromide counterions. This induces an increase in micelle size and also enhances silica condensation at the micelle surface. The presence of larger silica aggregates in solution further promotes the growth of micelles and, by binding to surfactant molecules in different micelles, their aggregation. This work demonstrates the crucial role played by silica in influencing, by way of a cooperative templating mechanism, the structure of the eventual liquid-crystal phase, which in turn determines the structure of the porous material
The conformational plasticity of the selectivity filter methionines controls the in-cell Cu(I) uptake through the CTR1 transporter
Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity copper transporter 1 (CTR1), being the main in-cell copper [Cu(I)] entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two methionine (Met) triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, our outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake
Robust Room-Temperature NO2Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe2)
We report a facile and robust room-temperature NO2 sensor fabricated using bi- and multi-layered 2H variant of tungsten di-selenide (2H-WSe2) nanosheets, exhibiting high sensing characteristics. A simple liquid-assisted exfoliation of 2H-WSe2, prepared using ambient pressure chemical vapor deposition, allows smooth integration of these nanosheets on transducers. Three sensor batches are fabricated by modulating the total number of layers (L) obtained from the total number of droplets from a homogeneous 2H-WSe2 dispersion, such as ∼2L, ∼5-6L, and ∼13-17L, respectively. The gas-sensing attributes of 2H-WSe2 nanosheets are investigated thoroughly. Room temperature (RT) experiments show that these devices are specifically tailored for NO2 detection. 2L WSe2 nanosheets deliver the best rapid response compared to ∼5-6L or ∼13-17L. The response of 2L WSe2 at RT is 250, 328, and 361% to 2, 4, and 6 ppm NO2, respectively. The sensor showed nearly the same response toward low NO2 concentration even after 9 months of testing, confirming its remarkable long-term stability. A selectivity study, performed at three working temperatures (RT, 100, and 150 °C), shows high selectivity at 150 and 100 °C. Full selectivity toward NO2 at RT confirms that 2H-WSe2 nanosheet-based sensors are ideal candidates for NO2 gas detection
- …