5 research outputs found

    COMPARISON OF THE STRUCTURAL AND RHEOLOGICAL CONSEQUENCES OF MICELLE FORMATION IN SOLUTIONS OF A MODEL DI-BLOCK COPOLYMER

    No full text
    In the selective solvent, dodecane, the di-block copolymer polystyrene-b-(ethylene-co-propylene), with a narrow molecular-weight distribution, forms micelles with polystyrene cores. Small-angle neutron scattering experiments were used to investigate both core shape and dimensions and the intercore structure factors as temperature or concentration were varied. Monodisperse spherical structures with radii around 120 Å were observed. Above a critical concentration these were arranged in relatively ordered structures in which preferred orientations could easily be induced. The core diameter and the intercore spacing were dependent on sample thermal history. During shear the intercore structure became less ordered. The structural results correlate well with measurements of the dynamic viscosity measured in oscillatory shear, which also show a sharp change from gel-like to liquid behaviour at this critical concentration. Data are compared to model calculations in the regions where the particle form factor or where the interparticle structure factor dominate. In the latter case a hard core potential with a soft tail is found to give reasonable agreement with the data, and to allow changes with shear rate, with concentration or with temperature to be interpreted. © 1988

    Biomaterials in Mechano-oncology: Means to Tune Materials to Study

    No full text
    ECM stiffness is emerging as a prognostic marker of tumor aggression or potential for relapse. However, conflicting reports muddle the question of whether increasing or decreasing stiffness is associated with aggressive disease. This chapter discusses this controversy in more detail, but the fact that tumor stiffening plays a key role in cancer progression and in regulating cancer cell behaviors is clear. The impact of having in vitro biomaterial systems that could capture this stiffening during tumor evolution is very high. These cell culture platforms could help reveal the mechanistic underpinnings of this evolution, find new therapeutic targets to inhibit the cross talk between tumor development and ECM stiffening, and serve as better, more physiologically relevant platforms for drug screening.https://scholarlycommons.pacific.edu/soecs-facbooks/1008/thumbnail.jp
    corecore