1,191 research outputs found

    CMB statistical isotropy confirmation at all scales using multipole vectors

    Full text link
    We present an efficient numerical code and conduct, for the first time, a null and model-independent CMB test of statistical isotropy using Multipole Vectors (MVs) at all scales. Because MVs are insensitive to the angular power spectrum CℓC_\ell, our results are independent from the assumed cosmological model. We avoid a posteriori choices and use pre-defined ranges of scales ℓ∈[2,30]\ell\in[2,30], ℓ∈[2,600]\ell\in[2,600] and ℓ∈[2,1500]\ell\in[2,1500] in our analyses. We find that all four masked Planck maps, from both 2015 and 2018 releases, are in agreement with statistical isotropy for ℓ∈[2,30]\ell\in[2,30], ℓ∈[2,600]\ell\in[2,600]. For ℓ∈[2,1500]\ell\in[2,1500] we detect anisotropies but this is indicative of simply the anisotropy in the noise: there is no anisotropy for ℓ<1300\ell < 1300 and an increasing level of anisotropy at higher multipoles. Our findings of no large-scale anisotropies seem to be a consequence of avoiding \emph{a posteriori} statistics. We also find that the degree of anisotropy in the full sky (i.e. unmasked) maps vary enormously (between less than 5 and over 1000 standard deviations) among the different mapmaking procedures and data releases.Comment: v4: additional analysis which increased statistical sensitivity, including new plots and tables; extended discussion; 15 pages, 14 figures, 7 tables. Matches published versio

    Collective versus hub activation of epidemic phases on networks

    Full text link
    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large exponent, at odds with canonical theoretical approaches.Comment: Revised version accepted for publication in PR

    Phase transitions with infinitely many absorbing states in complex networks

    Get PDF
    We instigate the properties of the threshold contact process (TCP), a process showing an absorbing-state phase transition with infinitely many absorbing states, on random complex networks. The finite size scaling exponents characterizing the transition are obtained in a heterogeneous mean field (HMF) approximation and compared with extensive simulations, particularly in the case of heterogeneous scale-free networks. We observe that the TCP exhibits the same critical properties as the contact process (CP), which undergoes an absorbing-state phase transition to a single absorbing state. The accordance among the critical exponents of different models and networks leads to conjecture that the critical behavior of the contact process in a HMF theory is a universal feature of absorbing state phase transitions in complex networks, depending only on the locality of the interactions and independent of the number of absorbing states. The conditions for the applicability of the conjecture are discussed considering a parallel with the susceptible-infected-susceptible epidemic spreading model, which in fact belongs to a different universality class in complex networks.Comment: 9 pages, 6 figures to appear in Phys Rev

    Schwarzschild-like black holes: Light-like trajectories and massless scalar absorption

    Full text link
    Black holes are among the most intriguing objects in nature. They are believed to be fully described by General Relativity (GR), and the astrophysical black holes are expected to belong to the Kerr family, obeying the no-hair theorems. Alternative theories of gravity or parameterized deviations of GR allow black hole solutions, which have additional parameters other than mass and angular momentum. We analyze a Schwarzschild-like metric, proposed by Johannsen and Psaltis, characterized by its mass and a deformation parameter. We compute the absorption cross section of massless scalar waves for different values of this deformation parameter and compare it with the corresponding scalar absorption cross section of the Schwarzschild black hole. We also present analytical approximations for the absorption cross section in the high-frequency regime. We check the consistence of our results comparing the numerical and analytical approaches, finding excellent agreement.Comment: 8 pages, 14 figure

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement

    Full text link
    This paper considers the control landscape of quantum transitions in multi-qubit systems driven by unitary transformations with single-qubit interaction terms. The two-qubit case is fully analyzed to reveal the features of the landscape including the nature of the absolute maximum and minimum, the saddle points and the absence of traps. The results permit calculating the Schmidt state starting from an arbitrary two-qubit state following the local gradient flow. The analysis of multi-qubit systems is more challenging, but the generalized Schmidt states may also be located by following the local gradient flow. Finally, we show the relation between the generalized Schmidt states and the entanglement measure based on the Bures distance

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure
    • …
    corecore