196 research outputs found
SU(N) Coherent States and Irreducible Schwinger Bosons
We exploit the SU(N) irreducible Schwinger boson to construct SU(N) coherent
states. This construction of SU(N) coherent state is analogous to the
construction of the simplest Heisenberg-Weyl coherent states. The coherent
states belonging to irreducible representations of SU(N) are labeled by the
eigenvalues of the SU(N) Casimir operators and are characterized by
complex orthonormal vectors describing the SU(N) group manifold.Comment: 12 pages, 3 figure
Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens
Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes—such as transcriptional profiles—at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays. Keywords:
single-cell RNA-seq; pooled screen; CRISPR; epistasis; genetic interaction
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
Recent molecular studies have shown that, even when derived from a seemingly homogenous population, individual cells can exhibit substantial differences in gene expression, protein levels and phenotypic output1, 2, 3, 4, 5, with important functional consequences4, 5. Existing studies of cellular heterogeneity, however, have typically measured only a few pre-selected RNAs1, 2 or proteins5, 6 simultaneously, because genomic profiling methods3 could not be applied to single cells until very recently7, 8, 9, 10. Here we use single-cell RNA sequencing to investigate heterogeneity in the response of mouse bone-marrow-derived dendritic cells (BMDCs) to lipopolysaccharide. We find extensive, and previously unobserved, bimodal variation in messenger RNA abundance and splicing patterns, which we validate by RNA-fluorescence in situ hybridization for select transcripts. In particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even for genes that are very highly expressed at the population average. Moreover, splicing patterns demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; other portions reflect differences in the usage of key regulatory circuits. For example, we identify a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from knockout mice, we show that variability in this module may be propagated through an interferon feedback circuit, involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the power and promise of single-cell genomics in uncovering functional diversity between cells and in deciphering cell states and circuits.National Institutes of Health (U.S.) (NIH Postdoctoral Fellowship (1F32HD075541-01))Charles H. Hood Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (NIH grant U54 AI057159)National Institutes of Health (U.S.) (NIH New Innovator Award (DP2 OD002230))National Institutes of Health (U.S.) (NIH CEGS Award (1P50HG006193-01))National Institutes of Health (U.S.) (NIH Pioneer Awards (5DP1OD003893-03))National Institutes of Health (U.S.) (NIH Pioneer Awards (DP1OD003958-01))Broad Institute of MIT and HarvardBroad Institute of MIT and Harvard (Klarman Cell Observatory
Recommended from our members
Single cell RNA Seq reveals dynamic paracrine control of cellular variation
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis, and function of gene expression variation between seemingly identical cells. Here, we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow derived dendritic cells (DCs) spanning several experimental conditions. We find substantial variation between identically stimulated DCs, in both the fraction of cells detectably expressing a given mRNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a “core” module of antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from knockout mice, and modulating secretion and extracellular signaling, we show that this response is coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell communication also substantially reduces variability in the expression of an early-induced “peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations use to establish complex dynamic responses
Semiconductor-based DNA sequencing of histone modification states
The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a ‘core’ module of antiviral genes is expressed very early by a few ‘precocious’ cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced ‘peaked’ inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.National Human Genome Research Institute (U.S.). Centers of Excellence in Genomic Science (1P50HG006193-01)National Institutes of Health (U.S.). Pioneer Award (DP1OD003958-01)Howard Hughes Medical InstituteBroad Institute of MIT and Harvard. Klarman Cell Observator
Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation
Caveolin-1 (Cav1) is an essential component of caveolae whose Src kinase-dependent phosphorylation on tyrosine 14 (Y14) is associated with regulation of focal adhesion dynamics. However, the relationship between these disparate functions remains to be elucidated. Caveola biogenesis requires expression of both Cav1 and cavin-1, but Cav1Y14 phosphorylation is dispensable. In this paper, we show that Cav1 tyrosine phosphorylation induces caveola biogenesis via actin-dependent mechanotransduction and inactivation of the Egr1 (early growth response-1) transcription factor, relieving inhibition of endogenous Cav1 and cavin-1 genes. Cav1 phosphorylation reduces Egr1 binding to Cav1 and cavin-1 promoters and stimulates their activity. In MDA-231 breast carcinoma cells that express elevated levels of Cav1 and caveolae, Egr1 regulated Cav1, and cavin-1 promoter activity was dependent on actin, Cav1, Src, and Rho-associated kinase as well as downstream protein kinase C (PKC) signaling. pCav1 is therefore a mechanotransducer that acts via PKC to relieve Egr1 transcriptional inhibition of Cav1 and cavin-1, defining a novel feedback regulatory loop to regulate caveola biogenesis
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface
Characterization of Na+-permeable cation channels in LLC-PK1 renal epithelial cells
In this study, the presence of Na+-permeable cation channels was determined and characterized in LLC-PK1 cells, a renal tubular epithelial cell line with proximal tubule characteristics derived from pig kidney. Patch-clamp analysis under cell-attached conditions indicated the presence of spontaneously active Na+-permeable cation channels. The channels displayed nonrectifying single channel conductance of 11 pS, substates, and an ∼3:1 Na+/K+ permeability-selectivity ratio. The Na+-permeable cation channels were inhibited by pertussis toxin and reactivated by G protein agonists. Cation channel activity was observed in quiescent cell-attached patches after vasopressin stimulation. The addition of protein kinase A and ATP to excised patches also induced Na+ channel activity. Spontaneous and vasopressin-induced Na+ channel activity were inhibited by extracellular amiloride. To begin assessing potential molecular candidates for this cation channel, both reverse transcription-PCR and immunocytochemical analyses were conducted in LLC-PK1 cells. Expression of porcine orthologs of the αENaC and ApxL genes were found in LLC-PK1 cells. The expression of both gene products was confirmed by immunocytochemical analysis. Although αENaC labeling was mostly intracellular, ApxL labeled to both the apical membrane and cytoplasmic compartments of subconfluent LLC-PK1 cells. Vasopressin stimulation had no effect on αENaC immunolabeling but modified the cellular distribution of ApxL, consistent with an increased membrane-associated ApxL. The data indicate that proximal tubular LLC-PK1 renal epithelial cells express amiloride-sensitive, Na+-permeable cation channels, which are regulated by the cAMP pathway, and G proteins. This channel activity may implicate previously reported epithelial channel proteins, although this will require further experimentation. The evidence provides new clues as to potentially relevant Na+ transport mechanisms in the mammalian proximal nephron.Fil: Raychowdhury, Malay K.. Harvard Medical School; Estados Unidos. Massachusetts General Hospital East; Estados UnidosFil: Ibarra, Cristina Adriana. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Damiano, Alicia Ermelinda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jackson Jr., George R.. Massachusetts General Hospital East; Estados UnidosFil: Smith, Peter R.. University of Alabama at Birmingahm; Estados UnidosFil: McLaughlin, Margaret. Massachusetts General Hospital East; Estados UnidosFil: Prat, Adriana G.. Massachusetts General Hospital East; Estados Unidos. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Ausiello, Dennis A.. Harvard Medical School; Estados Unidos. Massachusetts General Hospital East; Estados UnidosFil: Lader, Alan S.. Harvard Medical School; Estados Unidos. Massachusetts General Hospital East; Estados UnidosFil: Cantiello, Horacio Fabio. Massachusetts General Hospital East; Estados Unidos. Harvard Medical School; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
- …
