911 research outputs found

    Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress

    Get PDF
    Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for a WZ resonance, in the fully leptonic final state (electrons or muons), is performed using 139 fb - 1 of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi–Machacek model, produced by WZ fusion, and of a Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell–Yan process. No significant excess over the Standard Model prediction is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80μb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)μb and 9±6(stat)-2+2(syst)μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF
    This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb−1 of pp collisions collected in 2017 and 1.4 nb−1 of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R = 0.2 and R = 0.4, and only R = 0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R = 0.2 jets are also measured using 1.7 nb−1 of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R = 0.2 over the transverse momentum range of 80–290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆= 2.5 km, proton–proton elastic-scattering events were recorded at s=13 TeV with an integrated luminosity of 340μb-1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from - t= 2.5 · 10 - 4 GeV 2 to - t= 0.46 GeV 2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot , parameters of the nuclear slope, and the ρ -parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→ 0 . These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1mb,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude

    A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    The standard model of particle physics1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5–9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (τ)) are well measured and indications of interactions with a second-generation particle (muons, μ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model

    Search for the Exclusive W Boson Hadronic Decays W±→π±γ , W±→K±γ and W±→ρ±γ with the ATLAS Detector

    Get PDF
    corecore