14 research outputs found
HIV-associated Kaposi’s sarcoma in Maputo, Mozambique: outcomes in a specialized treatment center, 2010–2015
Kaposi's sarcoma (KS) is a common HIV-associated malignancy associated with disability, pain and poor outcomes. The cornerstone of its treatment is antiretroviral therapy, but advanced disease necessitates the addition of chemotherapy. In high-income settings, this often consists of liposomal anthracyclines, but in Mozambique, the first line includes conventional doxorubicin, bleomycin and vincristine, which is poorly-tolerated. Médecins Sans Frontières supports the Ministry of Health (MOH) in a specialized HIV and KS treatment center at the Centro de Referencia de Alto Maé in Maputo
Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles
Immune checkpoint inhibitors have considerably changed the landscape of oncology. However apart from world-acclaimed success stories limited to melanoma and lung cancer, many solid tumors failed to respond to immune checkpoint inhibitors due to limited immunogenicity, unfavorable tumor micro-environments (TME), lack of infiltrating T lymphocytes or increases in Tregs. Areas covered: Combinatorial strategies are foreseen as the future of immunotherapy and using cytotoxics or modulating agents is expected to boost the efficacy of immune checkpoint inhibitors. In this respect, nanoparticles displaying unique pharmacokinetic features such as tumor targeting properties, optimal payload delivery and long-lasting interferences with TME, are promising candidates for such combinations. This review covers the basis, expectancies, limits and pitfalls of future combination between nanoparticles and immune check point inhibitors. Expert opinion: Nanoparticles allow optimal delivery of variety of payloads in tumors while sparing healthy tissue, thus triggering immunogenic cell death. Depleting tumor stroma could further help immune cells and monoclonal antibodies to better circulate in the TME, plus immune-modulating properties of the charged cytotoxics. Finally, nanoparticles themselves present immunogenicity and antigenicity likely to boost immune response at the tumor level
Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation
<p>Abstract</p> <p>Purpose</p> <p>To assess if intensity-modulated radiotherapy (IMRT) can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting.</p> <p>Methods and materials</p> <p>A literature search in the PubMed databases was conducted in July, 2012.</p> <p>Results</p> <p>Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional) RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used.</p> <p>Conclusion</p> <p>IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.</p