198,025 research outputs found
Firm Performance, Worker Commitment and Loyalty
Using matched employer-employee level data drawn from the UK Workplace and Employee Relations Survey, we explore the influence of worker commitment and loyalty on firm level labour productivity and financial performance. Our empirical findings suggest that worker commitment and loyalty enhance both labour productivity and financial performance at the firm level thereby highlighting a hitherto neglected conduit for improved firm performance. Using employee level data, we also explore the determinants of worker commitment and loyalty in order to ascertain how such attachments to the firm may be engendered. In general, our employee level analysis suggests that it is firm level characteristics (such as appraisal schemes, supervision, suspensions and redundancies) that influence attachments to the firm. Such findings suggest that firms may be able to exert some influence over the loyalty and commitment of its workforce, which, in turn, may affect firm performance
Canonical Quasilocal Energy and Small Spheres
Consider the definition E of quasilocal energy stemming from the
Hamilton-Jacobi method as applied to the canonical form of the gravitational
action. We examine E in the standard "small-sphere limit," first considered by
Horowitz and Schmidt in their examination of Hawking's quasilocal mass. By the
term "small sphere" we mean a cut S(r), level in an affine radius r, of the
lightcone belonging to a generic spacetime point. As a power series in r, we
compute the energy E of the gravitational and matter fields on a spacelike
hypersurface spanning S(r). Much of our analysis concerns conceptual and
technical issues associated with assigning the zero-point of the energy. For
the small-sphere limit, we argue that the correct zero-point is obtained via a
"lightcone reference," which stems from a certain isometric embedding of S(r)
into a genuine lightcone of Minkowski spacetime. Choosing this zero-point, we
find agreement with Hawking's quasilocal mass expression, up to and including
the first non-trivial order in the affine radius. The vacuum limit relates the
quasilocal energy directly to the Bel-Robinson tensor.Comment: revtex, 22 p, uses amssymb option (can be removed
Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy
The nature of MHD turbulence is analyzed through both temporal and spatial
magnetic fluctuation spectra. A magnetically turbulent plasma is produced in
the MHD wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX).
The power of magnetic fluctuations is projected into directions perpendicular
and parallel to a local mean field; the ratio of these quantities shows the
presence of variance anisotropy which varies as a function of frequency.
Comparison amongst magnetic, velocity, and density spectra are also made,
demonstrating that the energy of the turbulence observed is primarily seeded by
magnetic fields created during plasma production. Direct spatial spectra are
constructed using multi-channel diagnostics and are used to compare to
frequency spectra converted to spatial scales using the Taylor Hypothesis.
Evidence for the observation of dissipation due to ion inertial length scale
physics is also discussed as well as the role laboratory experiment can play in
understanding turbulence typically studied in space settings such as the solar
wind. Finally, all turbulence results are shown to compare fairly well to a
Hall-MHD simulation of the experiment.Comment: 17 pages, 17 figures, Submitted to Astrophysical Journa
Multiparticle Interference, GHZ Entanglement, and Full Counting Statistics
We investigate the quantum transport in a generalized N-particle Hanbury
Brown--Twiss setup enclosing magnetic flux, and demonstrate that the Nth-order
cumulant of current cross correlations exhibits Aharonov-Bohm oscillations,
while there is no such oscillation in all the lower-order cumulants. The
multiparticle interference results from the orbital Greenberger-Horne-Zeilinger
entanglement of N indistinguishable particles. For sufficiently strong
Aharonov-Bohm oscillations the generalized Bell inequalities may be violated,
proving the N-particle quantum nonlocality.Comment: 4 pages, 1 figure, published versio
The influence of steps on the dissociation of NO on Pt surfaces: Temperature-programmed desorption studies of NO adsorption on Pt{211}
Temperature-programmed desorption (TPD) has been used to investigate the adsorption of NO on Pt{211} at 300 K and 120 K. Results show that NO dissociation occurs readily on Pt{211}, as evidenced by the observation of N-2 and N2O in the TPD spectrum. Following adsorption at 120 K three NO TPD peaks at 338, 416, and 503 K are observed, in agreement with previous observations. In combination with data acquired in a recent reflection absorption infrared spectroscopy and density functional theory investigation of NO/Pt{211}, these peaks are assigned to the desorption of NO from an O-NO complex, the recombinative desorption of N and O atoms, and to desorption of a step-bridged NO species, respectively. These assignments are in disagreement with previous work, where the high-temperature NO peak was assigned to the desorption of step bound NO and the two low-temperature peaks were assigned to the desorption of NO from terrace sites. TPD spectra recorded following adsorption at 300 K, with a heating rate of 1 K s(-1), show similar features to those recorded following 120 K adsorption. This is also in disagreement with previous observations, where only two NO TPD peaks were observed following adsorption at room temperature. This disagreement can be accounted for by the different heating rates used in the two experiments. (C) 2003 American Institute of Physics
Hierarchical approach to 'atomistic' 3-D MOSFET simulation
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations
Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions
We present shell model calculations for the beta-decay of the 14C ground
state to the 14N ground state, treating the states of the A=14 multiplet as two
0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN)
interactions derived from the realistic Bonn-B potential and find that the
Gamow-Teller matrix element is too large to describe the known lifetime. By
using a modified version of this potential that incorporates the effects of
Brown-Rho scaling medium modifications, we find that the GT matrix element
vanishes for a nuclear density around 85% that of nuclear matter. We find that
the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is
improved using the medium-modified Bonn-B potential and that the transition
strengths from excited states of 14C to the 14N ground state are compatible
with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion
Tunable magnetization damping in transition metal ternary alloys
We show that magnetization damping in Permalloy, Ni80Fe20 (``Py''), can be
enhanced sufficiently to reduce post-switching magnetization precession to an
acceptable level by alloying with the transition metal osmium (Os). The damping
increases monotonically upon raising the Os-concentration in Py, at least up to
9% of Os. Other effects of alloying with Os are suppression of magnetization
and enhancement of in-plane anisotropy. Magnetization damping also increases
significantly upon alloying with the five other transition metals included in
this study (4d-elements: Nb, Ru, Rh; 5d-elements: Ta, Pt) but never as strongly
as with Os.Comment: 4 pages, submitted to Appl. Phys. Let
- …
