647 research outputs found
Accounting education and the corporate reporting function : inaugural lecture delivered at Rhodes University
Inaugural lecture delivered at Rhodes UniversityRhodes University Libraries (Digitisation
Mixed-Mode Sensitivity Analysis of a Combined Differential and Common Mode Active Receiving Antenna Providing Near-Hemispherical Field-of-View Coverage
A theoretical framework for a mixed differential and common mode sensitivity analysis of active receiving antennas is presented, which includes the derivation of a novel set of noise parameters for dual-mode balanced amplifiers. The analysis is applied to an example of a mixed-mode active wire antenna design, consisting of an integrated monopole and dipole structure. Results of numerical simulations and experimental measurements are presented which show that, for a single-polarized design, the judicious use of both differential and common modes enables the field-of-view coverage to be extended over the entire hemisphere with a variation in receiving sensitivity of less than 3 dB in the E-plane
Quad-Mode Antenna for Wide-Scan Sparse Arrays
A conical quad-mode antenna excited through four orthogonal transverse electromagnetic modes is presented. The radiation characteristics of each mode are validated through measurements, illustrating the complimentary nature of the four far-field radiation patterns through which near-hemispherical field-of-view coverage can be achieved
Thermal simulation of magnetization reversals for size-distributed assemblies of core-shell exchange biased nanoparticles
A temperature dependent coherent magnetization reversal model is proposed for
size-distributed assemblies of ferromagnetic nanoparticles and
ferromagnetic-antiferromagnetic core-shell nanoparticles. The nanoparticles are
assumed to be of uniaxial anisotropy and all aligned along their easy axis. The
thermal dependence is included by considering thermal fluctuations, implemented
via the N\'eel-Arrhenius theory. Thermal and angular dependence of
magnetization reversal loops, coercive field and exchange-bias field are
obtained, showing that F-AF size-distributed exchange-coupled nanoparticles
exhibit temperature-dependent asymmetric magnetization reversal. Also,
non-monotonic evolutions of He and Hc with T are demonstrated. The angular
dependence of Hc with T exhibits a complex behavior, with the presence of an
apex, whose position and amplitude are strongly T dependent. The angular
dependence of He with T exhibits complex behaviors, which depends on the AF
anisotropy and exchange coupling. The resulting angular behavior demonstrates
the key role of the size distribution and temperature in the magnetic response
of nanoparticles.Comment: Revised arguments in Introduction and last sectio
Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds
We consider the most general three-state spin chain with U(1)^3 symmetry and
nearest neighbour interaction. Our model contains as a special case the spin
chain describing the holomorphic three scalar sector of the three parameter
complex deformation of N=4 SYM, dual to type IIB string theory in the
generalized Lunin-Maldacena backgrounds discovered by Frolov. We formulate the
coordinate space Bethe ansatz, calculate the S-matrix and determine for which
choices of parameters the S-matrix fulfills the Yang-Baxter equations. For
these choices of parameters we furthermore write down the R-matrix. We find in
total four classes of integrable models. In particular, each already known
model of the above type is nothing but one in a family of such models.Comment: 16 pages, 3 figures, references correcte
A note on the universality of the Hagedorn behavior of pp-wave strings
Following on from recent studies of string theory on a one-parameter family
of integrable deformations of proposed by Lunin and
Maldacena, we carry out a systematic analysis of the high temperature
properties of type IIB strings on the associated pp-wave geometries. In
particular, through the computation of the thermal partition function and free
energy we find that not only does the theory exhibit a Hagedorn transition in
both the and class of pp-waves, but that the Hagedorn
temperature is insensitive to the deformation suggesting an interesting
universality in the high temperature behaviour of the pp-wave string theory. We
comment also on the implications of this universality on the
confinement/deconfinement transition in the dual
Leigh-Strassler deformation of Yang-Mills theory.Comment: 25 pages; fixed minor typo; added reference
Beyond the Planar Limit in ABJM
In this article we consider gauge theories with a U(N)X U(N) gauge group. We
provide, for the first time, a complete set of operators built from scalar
fields that are in the bi fundamental of the two groups. Our operators
diagonalize the two point function of the free field theory at all orders in
1/N. We then use this basis to investigate non-planar anomalous dimensions in
the ABJM theory. We show that the dilatation operator reduces to a set of
decoupled harmonic oscillators, signaling integrability in a nonplanar large N
limit.Comment: v2: minor revisison
ABJM Dibaryon Spectroscopy
We extend the proposal for a detailed map between wrapped D-branes in Anti-de
Sitter space and baryon-like operators in the associated dual conformal field
theory provided in hep-th/0202150 to the recently formulated AdS_4 \times
CP^3/ABJM correspondence. In this example, the role of the dibaryon operator of
the 3-dimensional CFT is played by a D4-brane wrapping a CP^2 \subset CP^3.
This topologically stable D-brane in the AdS_4 \times CP^3 is nothing but
one-half of the maximal giant graviton on CP^3.Comment: 26 page
On the perturbative chiral ring for marginally deformed N=4 SYM theories
For \cal{N}=1 SU(N) SYM theories obtained as marginal deformations of the
\cal{N}=4 parent theory we study perturbatively some sectors of the chiral ring
in the weak coupling regime and for finite N. By exploiting the relation
between the definition of chiral ring and the effective superpotential we
develop a procedure which allows us to easily determine protected chiral
operators up to n loops once the superpotential has been computed up to (n-1)
order. In particular, for the Lunin-Maldacena beta-deformed theory we determine
the quantum structure of a large class of operators up to three loops. We
extend our procedure to more general Leigh-Strassler deformations whose chiral
ring is not fully understood yet and determine the weight-two and weight-three
sectors up to two loops. We use our results to infer general properties of the
chiral ring.Comment: LaTex, 40 pages, 4 figures, uses JHEP3; v2: minor correction
Semiclassical Strings, Dipole Deformations of N=1 SYM and Decoupling of KK Modes
In this paper we investigate the recently found -deformed
Maldacena-Nunez background by studying the behavior of different semiclassical
string configurations. This background is conjectured to be dual to dipole
deformations of SYM. We compare our results to those in the pure
Maldacena-Nunez background and show that the energies of our string
configurations are higher than in the undeformed background. Thinking in the
lines of (hep-th/0505100) we argue that this is an evidence for better
decoupling of the Kaluza-Klein modes from the pure SYM theory excitations.
Moreover we are able to find a limit of the background in which the string
energy is independent of , these strings are interpreted as
corresponding to pure gauge theory effects.Comment: 31 pages, references added, new solutions in Section 7 presented, an
appendix added, to appear in JHE
- …
