23 research outputs found

    Treatment of ocular allergies:nonpharmacologic, pharmacologic and immunotherapy

    Get PDF
    Ocular allergy is a significant and growing issue worldwide but for many patients, it is often not differentiated from systemic conditions, such as hay fever. Management of seasonal and perennial allergic conjunctivitis is often poor. Management is principally through avoidance measures (blocking or hygiene), nonpharmaceutical (such as artificial tears and cold compresses) and pharmaceutical (such as topical antihistamines and prophylactic mast cell stabilizers). Vernal and atopic keratoconjunctivitis are more severe and generally need treatment with NSAIDs, steroids and immunomodulators. Giant papillary conjunctivitis can be related to allergy but also is often contact lens related and in such cases can be managed by a period of abstinence and replacement of the lens or a change in lens material and/or design. Immunotherapy can be efficacious in severe, persistent cases of contact lens or allergic conjunctivitis

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1

    No full text
    CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases

    TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene “TLR2 activation” signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.Joanne Lundy, Linden J. Gearing, Hugh Gao, Alison C. West, Louise McLeod, Virginie Deswaerte, Liang Yu, Sean Porazinski, Marina Pajic, Paul J. Hertzog, Daniel Croagh, and Brendan J. Jenkin

    YAP is essential for tissue tension to ensure vertebrate 3D body shape

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues
    corecore