230 research outputs found

    Usporedba kakvoće dimljenih smrznutih i ohlađenih proizvoda od pačjeg mesa

    Get PDF
    The aim of the project was to assess the influence of processes of preservation (chilling and freezing) on quali-ty parameters of the thermally treated poultry meat pro-ducts. Duck breasts were first defrosted, and then cooked and preserved by chilling and deep-freezing. In the next phase, the individual sensory, physical and chemical, and microbiological parameters were compared. Observation of their influence on qualitative properties of both products followed. Comparison of quality of smoked duck breasts preserved by freezing and chilling proved that both ways of preservation did not affect the original properties of products. Even some of the examined individual sensory parameters (taste, flavor, and tenderness)showed higher values in pair test. Microbiological quality of both products was in accordance with requirements of the Codex alimentarius of the Slovak Republic.Cilj ispitivanja je bila procjena utjecaja procesa konzerviranja (hlađenja i smrzavanja) na kvalitativne parametre termički obrađenih proizvoda od mesa peradi. Pačja prsa su najprije odmrznuta, a zatim kuhana i konzervirana hlađenjem ili smrzavanjem. U sljedećoj fazi, uspoređeni su pojedini senzorni, te fizikalni, kemijski i mikrobiološki parametri. Nakon toga je slijedilo praćenje njihovog utjecaja na kvalitativna svojstva oba proizvoda. Usporedba kakvoće dimljenih pačjih prsiju, prethodno smrznutih ili ohlađenih, pokazala je da oba načina konzerviranja ne utječu na izvorna svojstva proizvoda iako su u analizi pojedinih senzornih parametara (okus, miris i nježnost) veće vrijednosti dobivene u parnim usporednim testovima. Mikrobiološka kakvoća oba proizvoda bila je sukladna zahtjevima Codex alimentarius Republike Slovačke

    Investigation of the temperature-relatedwear performance of hard nanostructured coatings deposited on a s600 high speed steel

    Get PDF
    Thin hard coatings are widely known as key elements in many industrial fields, from equipment for metal machining to dental implants and orthopedic prosthesis. When it comes to machining and cutting tools, thin hard coatings are crucial for decreasing the coefficient of friction (COF) and for protecting tools against oxidation. The aim of this work was to evaluate the tribological performance of two commercially available thin hard coatings deposited by physical vapor deposition (PVD) on a high speed tool steel (S600) under extreme working conditions. For this purpose, pin-on-disc wear tests were carried out either at room temperature (293 K) or at high temperature (873 K) against alumina (Al2O3) balls. Two thin hard nitrogen-rich coatings were considered: a multilayer AlTiCrN and a superlattice (nanolayered) CrN/NbN. The surface and microstructure characterization were performed by optical profilometry, field-emission gun scanning electron microscopy (FEGSEM), and energy dispersive spectroscopy (EDS).Funding: This research was made possible by an NPRP award NPRP 5-423-2-167 from the Qatar National Research Fund (a member of The Qatar Foundation)

    Antimicrobial Modification of LDPE Using Non-thermal Plasma

    Get PDF
    Low-density polyethylene (LDPE) represents polymer having good chemical and physical characteristics for which it is widely used in many applications, such as biomedical and food packaging industry. This polymer excels by good transparency, flexibility, low weight and cost which makes it suitable material compared to non-polymer packaging materials. However, its hydrophobicity cause many limitations for antimicrobial activity which can result in absence of some characteristics required in food packaging applications. For that purpose, some researches have done experiments to modify the polymer surface to increase the surface free energy (hydrophilicity). This can be done by introducing some polar functional groups into the LDPE surface which will permit an increment of its surface free energy and so its wettability or adhesion without any disruption in its bulk properties [1]. One of the most preferable modification techniques is known as non-thermal radio-frequency discharge plasma, and it is preferred technique due to the ability to modify only thin surface layer leading to noticable improvement of the surface properties [2].Moreover, it represents environmentally friendly technique since it does not require the use of any hazardous chemicals or dangerous radiations and therefore non-thermal plasma is highly recommended for food packaging applications [1]. In addition, the surface modification of LDPE can lead to the enhancement of the antimicrobial activity, which was the main purpose of this research. Food packaging materials requires preventing any growth of bacteria, fungal, or any other microbial organisms for health and food safety. Some approved preservatives are commonly used directly in foods to preserve them form microorganisms growth and spoilage. Nowadays, some innovative ways are applied to graft acrylic acid on polymers surfaces [3] for biomedical applications to create an effective layer for an immobilization of antibacterial agents and this results in bacteria prevention on the LDPE surface. In this research, we focused on grafting of sorbic acid as one of the most commonly used preservatives in food and beverage for being safe, and effective in bacteria inhibition (whether pathogenic strains or spoilage kinds), molds, and yeasts [4]. It is also used in cosmetic industries since it has good compatibility with skin and it is easily usable [5]. For the potential enhancement of the antimicrobial efficiency, chitosan representing antimicrobial agent was used for the immobilization on sorbic acid created layer. Chitosan (a derivative of chitin polysaccharide) was chosen as a natural occurring antimicrobial agent (from crabs shrimps, and other sea shells [5]) that has strong and effective antimicrobial activity along with its nontoxicity, biofunctionality, biodegradability, and biocompatibility [6]. In this study, the LDPE surface was modified by several modification steps. The first step involved the modification of the LDPE surface by non-thermal radio-frequency discharge plasma as a radical graft initiator for the subsequently polymerization of sorbic acid containing double bonds. In the next step, grafting of sorbic acid was carried out immediately after plasma treatment allowing the interaction of plasma created radicals on LDPE surface with sorbic acid. Final step was focused on the immobilization of chitosan on grafted sorbic acid platform. Each modification step was analyzed by different analytical techniques and methods to obtain detailed information about the modification process. The surface parameters changes after modification of the LDPE surface, such as surface free energy (contact angles measurements), graft yield (gravimetric measurements) surface morphology (scanning electron microscopy and atomic force microscopy) and chemistry (Fourier transform infrared spectroscopy with attenuated total reflectance) were obtained allowing understanding the modification process.Qscienc

    Corrosion behavior of electrodeposited Ni-B coatings modified with SiO2 particles

    Get PDF
    The need for coatings with improved operation is vital to insure safety and high output of industrial plants. Electrodeposition is a valuable surface modification technology that can be used to develop various kinds of coatings. Although, Ni-B coatings have good mechanical properties (hardness and wear) but are suffering from inferior corrosion resistance. The development of Ni-B composite coatings by incorporating insoluble hard particles such as metal oxides (Al2O3, TiO2 ) through electrodeposition process has generated a great interest among the research community because of auspicious improvement in properties. The main purpose of this research work was to study the influence of addition of SiO2 particles on corrosion performance of Ni-B coated surfaces which has not been reported so far. Coatings of Ni-B and Ni-B-SiO2 were deposited on steel through electrodeposition process. The microstructural (SEM) analysis confirms the formation of uniform, dense nodular structure in coatings of Ni-B and Ni-B-SiO2 . Surface examination (AFM) discloses that the addition of SiO2 increases surface smoothness. Electrochemical characterization of the synthesized coatings indicates that Ni-B-SiO2 composite coatings demonstrate better anticorrosion properties when compared to Ni-B. Enhanced corrosion performance may be ascribed to reduction in the active surface area and grain size refinement which reduces the porosity by the addition of inactive SiO2 particles.Scopu

    Microbial composition analyses by 16S rRNA sequencing: A proof of concept approach to provenance determination of archaeological ochre

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Many archaeological science studies use the concept of “provenance”, where the origins of cultural material can be determined through physical or chemical properties that relate back to the origins of the material. Recent studies using DNA profiling of bacteria have been used for the forensic determination of soils, towards determination of geographic origin. This manuscript presents a novel approach to the provenance of archaeological minerals and related materials through the use of 16S rRNA sequencing analysis of microbial DNA. Through the microbial DNA characterization from ochre and multivariate statistics, we have demonstrated the clear discrimination between four distinct Australian cultural ochre sites

    Isolated talonavicular arthrodesis in patients with rheumatoid arthritis of the foot and tibialis posterior tendon dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The foot is often affected in patients with rheumatoid arthritis. Subtalar joints are involved more frequently than ankle joints. Deformities of subtalar joints often lead to painful flatfoot and valgus deformity of the heel. Major contributors to the early development of foot deformities include talonavicular joint destruction and tibialis posterior tendon dysfunction, mainly due to its rupture.</p> <p>Methods</p> <p>Between 2002 and 2005 we performed isolated talonavicular arthrodesis in 26 patients; twenty women and six men. Tibialis posterior tendon dysfunction was diagnosed preoperatively by physical examination and by MRI. Talonavicular fusion was achieved via screws in eight patients, memory staples in twelve patients and a combination of screws and memory staples in six cases. The average duration of immobilization after the surgery was four weeks, followed by rehabilitation. Full weight bearing was allowed two to three months after surgery.</p> <p>Results</p> <p>The mean age of the group at the time of the surgery was 43.6 years. MRI examination revealed a torn tendon in nine cases with no significant destruction of the talonavicular joint seen on X-rays. Mean of postoperative followup was 4.5 years (3 to 7 years). The mean of AOFAS Hindfoot score improved from 48.2 preoperatively to 88.6 points at the last postoperative followup. Eighteen patients had excellent results (none, mild occasional pain), six patients had moderate pain of the foot and two patients had severe pain in evaluation with the score. Complications included superficial wound infections in two patients and a nonunion developed in one case.</p> <p>Conclusions</p> <p>Early isolated talonavicular arthrodesis provides excellent pain relief and prevents further progression of the foot deformities in patients with rheumatoid arthritis and tibialis posterior tendon dysfunction.</p
    corecore