318 research outputs found

    Tortuous ways to the extraction of neutron observables from inclusive lepton scattering

    Full text link
    We analyze new JLAB data for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3x0.950.3\lesssim x\lesssim 0.95 show on a logarithmic scale reasonable agreement for all targets. However, closer inspection of the Quasi-Elastic components bares serious discrepancies. EMC ratios which may contain less systematic errors fare the same. The above observations for the new data do not enable the extraction of the magnetic form factor (FF) GMnG_M^n and the Structure Function (SFs) F2nF_2^n of the neutron, although the application of exactly the same analysis to older data had been successful. We add to the above analysis older CLAS collaboration on F2DF_2^D. Removing some scattered points, it appears possible to obtain the above mentioned neutron information. We compare our results with others from alternative sources. Particular attention is paid to the A=3 iso-doublet. Present data exist only for 3^3He, but the available input and charge symmetry also enable computations for 3^3H. Their average is the computed iso-scalar part and is compared with the empirical modification of 3^3He towards a fictitious A=3 iso-singlet.Comment: 27 pages, 30 figure

    Deep inelastic scattering from A=3 nuclei and the neutron structure function

    Get PDF
    We present a comprehensive analysis of deep inelastic scattering from He-3 and H-3, focusing in particular on the extraction of the free neutron structure function, F_2^n. Nuclear corrections are shown to cancel to within 1-2% for the isospin-weighted ratio of He-3 to H-3 structure functions, which leads to more than an order of magnitude improvement in the current uncertainty on the neutron to proton ratio F_2^n/F_2^p at large x. Theoretical uncertainties originating from the nuclear wave function, including possible non-nucleonic components, are evaluated. Measurement of the He-3 and H-3 structure functions will, in addition, determine the magnitude of the EMC effect in all A < 4 nuclei.Comment: 40 pages, 12 figures, to appear in Phys. Rev.

    Mesenchymal Stem Cells for Treatment of CNS Injury

    Get PDF
    Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy. A variety of stem cell treatments have been examined in animal models of CNS trauma. Many of these studies have used stem cells as a cell-replacement strategy. These investigations have also highlighted the significant limitations of this approach. Another potential strategy for stem cell therapy utilises stem cells as a delivery mechanism for therapeutic molecules. This review surveys the literature relevant to the potential of mesenchymal stem cells for delivery of therapeutic agents in CNS trauma in humans

    Nuclear effects in Deep Inelastic Scattering of polarized electrons off polarized 3He and the neutron spin structure functions

    Full text link
    It is shown that the nuclear effects playing a relevant role in Deep Inelastic Scattering of polarized electrons by polarized 3^3He are mainly those arising from the effective proton and neutron polarizations generated by the SS' and DD waves in 3^3He. A simple and reliable equation relating the neutron, g1ng_1^n, and 3^3He, g13g_1^3, spin structure functions is proposed. It is shown that the measurement of the first moment of the 3^3He structure function can provide a significant check of the Bjorken Sum Rule.Comment: 11 pages (revTeX), DFUPG 75/93; 5 (postscript) figures available upon request from the author

    Trouble in Asymptopia---the Hulthen Model on the Light Front

    Get PDF
    We use light-front dynamics to calculate the electromagnetic form-factor for the Hulthen model of the deuteron. For small momentum transfer Q^2 < 5 GeV^2 the relativistic effects are quite small. For Q^2 = 11 GeV^2 there is about a 13% discrepancy between the relativistic and non-relativistic approaches. For asymptotically large momentum transfer, however, the light-front form factor, log Q^2 /Q^4, markedly differs from the non-relativistic version, 1/Q^4. This behavior is also present for any wave function, such as those obtained from realistic potential models, which can be represented as a sum of Yukawa functions. Furthermore, the asymptotic behavior is in disagreement with the Drell-Yan-West relation. We investigate precisely how to determine the asymptotic behavior and confront the problem underlying troublesome form factors on the light front.Comment: 20 pages, 8 figures Accepted by Phys. Rev

    Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei

    Full text link
    We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unraveling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.Comment: 37 pages, 17 figures, submitted to Reports on Progress in Physic

    Inclusive Electron Scattering from Nuclei at x1x \simeq 1

    Get PDF
    The inclusive A(e,e') cross section for x1x \simeq 1 was measured on 2^2H, C, Fe, and Au for momentum transfers Q2Q^2 from 1-7 (GeV/c)2^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit ξ\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.Comment: 4 pages, RevTeX; 4 figures (postscript in .tar.Z file

    Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    Full text link
    The generalized forward spin polarizabilities γ0\gamma_0 and δLT\delta_{LT} of the neutron have been extracted for the first time in a Q2Q^2 range from 0.1 to 0.9 GeV2^2. Since γ0\gamma_0 is sensitive to nucleon resonances and δLT\delta_{LT} is insensitive to the Δ\Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT\delta_{LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for γ0\gamma_0 at low Q2Q^2 are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR

    JLab Measurements of the 3He Form Factors at Large Momentum Transfers

    Get PDF
    The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
    corecore