40 research outputs found

    High Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells

    Get PDF
    Background: High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. Methods and Results: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1- [ 3 H]-2deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) a were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-a were diminished in SR-BI knock-down 3T3-L1 cells. Conclusions: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells throug

    Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines

    Get PDF
    The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating the MAPK pathway via cyclin D. Decreased PTEN expression is correlated with prostate cancer progression. Over-expression of AR and upregulation of AR transcriptional activity are often observed in the later stages of prostate cancer. Recent studies indicate that PTEN regulates AR activity and stability. However, the mechanism of how AR regulates PTEN has never been studied. Furthermore, resveratrol, a phytoalexin enriched in red grapes, strawberries and peanuts, has been shown to inhibit AR transcriptional activity in prostate cancer cells. In this study, we use prostate cancer cell lines to test the hypothesis that resveratrol inhibits cellular proliferation in both AR-dependent and -independent mechanisms. We show that resveratrol inhibits AR transcriptional activity in both androgen-dependent and -independent prostate cancer cells. Additionally, resveratrol stimulates PTEN expression through AR inhibition. In contrast, resveratrol directly binds epidermal growth factor receptor (EGFR) rapidly inhibiting EGFR phosphorylation, resulting in decreased AKT phosphorylation, in an AR-independent manner. Thus, resveratrol may act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway

    A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice

    Get PDF
    Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg−1 day−1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR

    Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) has been noted to produce ischemic preconditioning (IPC)-mediated cardioprotection. Caveolin is a negative regulator of NO, which inhibits endothelial nitric oxide synthase (eNOS) by making caveolin-eNOS complex. The expression of caveolin is increased during diabetes mellitus (DM). The present study was designed to investigate the involvement of caveolin in attenuation of the cardioprotective effect of IPC during DM in rat.</p> <p>Methods</p> <p>Experimental DM was induced by single dose of streptozotocin (50 mg/Kg, <it>i.p</it>,) and animals were used for experiments four weeks later. Isolated heart was mounted on Langendorff's apparatus, and was subjected to 30 min of global ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Kreb's-Henseleit solution (K-H). Extent of injury was measured in terms of infarct size by triphenyltetrazolium chloride (TTC) staining, and release of lactate dehydrogenase (LDH) and creatin kinase-MB (CK-MB) in coronary effluent. The cardiac release of NO was noted by measuring the level of nitrite in coronary effluent.</p> <p>Results</p> <p>IPC- induced cardioprotection and release of NO was significantly decreased in diabetic rat heart. Pre-treatment of diabetic rat with daidzein (DDZ) a caveolin inhibitor (0.2 mg/Kg/s.c), for one week, significantly increased the release of NO and restored the attenuated cardioprotective effect of IPC. Also perfusion of sodium nitrite (10 ÎŒM/L), a precursor of NO, significantly restored the lost effect of IPC, similar to daidzein in diabetic rat. Administration of 5-hydroxy deaconate (5-HD), a mito K<sub>ATP </sub>channel blocker, significantly abolished the observed IPC-induced cardioprotection in normal rat or daidzein and sodium nitrite perfused diabetic rat heart alone or in combination.</p> <p>Conclusions</p> <p>Thus, it is suggested that attenuation of the cardioprotection in diabetic heart may be due to decrease the IPC mediated release of NO in the diabetic myocardium, which may be due to up -regulation of caveolin and subsequently decreased activity of eNOS.</p

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    ADM1 can be applied to continuous bio-hydrogen production using a variable stoichiometry approach

    No full text
    The IWA Anaerobic Digestion Model No.1 (ADM1) has been extensively used in recent years. However, its application to non-methanogenic systems is limited by the use of constant-stoichiometry to describe product formation from carbohydrate fermentation. This study presents a modification of the ADM1 using a variable stoichiometry approach, derived from experimental information. The biomass and product yields from glucose degradation are assumed to be dynamically depending on the total concentration of undissociated acids in the reactor. Experimental data from an 11 L mesophilic continuous bio-hydrogen reactor fed with 20, 40, 50 and 10 g/L of sucrose, were used to validate the approach. The modified model achieved good predictions of the experimental data, using the standard ADM1 parameter values, without any parameter fitting beyond the implementation of the variable stoichiometry. The modification approach proposed extends the applicability of the ADM1 to non-methanogenic fermentative systems and in particular to continuous bio-hydrogen production

    Integration of biohydrogen, biomethane and bioelectrochemical systems

    No full text
    Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy
    corecore