241 research outputs found

    Cannibalism of Live Lymphocytes by Human Metastatic but Not Primary Melanoma Cells

    Get PDF
    The phenomenon of cell cannibalism, which generally refers to the engulfment of cells within other cells, was described in malignant tumors, but its biological significance is still largely unknown. In the present study, we investigated the occurrence, the in vivo relevance, and the underlying mechanisms of cannibalism in human melanoma. As first evidence, we observed that tumor cannibalism was clearly detectable in vivo in metastatic lesions of melanoma and often involved T cells, which could be found in a degraded state within tumor cells. Then, in vitro experiments confirmed that cannibalism of T cells was a property of metastatic melanoma cells but not of primary melanoma cells. In particular, morphologic analyses, including time-lapse cinematography and electron microscopy, revealed a sequence of events, in which metastatic melanoma cells were able to engulf and digest live autologous melanoma-specific CD8+ T cells. Importantly, this cannibalistic activity significantly increased metastatic melanoma cell survival, particularly under starvation condition, supporting the evidence that tumor cells may use the eating of live lymphocytes as a way to ‘‘feed’’ in condition of low nutrient supply. The mechanism underlying cannibalism involved a complex framework, including lysosomal protease cathepsin B activity, caveolae formation, and ezrin cytoskeleton integrity and function. In conclusion, our study shows that human metastatic melanoma cells may eat live T cells, which are instead programmed to kill them, suggesting a novel mechanism of tumor immune escape. Moreover, our data suggest that cannibalism may represent a sort of ‘‘feeding’’ activity aimed at sustaining survival and progression of malignant tumor cells in an unfavorable microenvironment. (Cancer Res 2006; 66(7): 3629-38

    Cancer-Initiating Cells from Colorectal cancer Patients Escape from T Cell-Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4

    Get PDF
    Cancer-initiating cells (CICs) that are responsible for tumor initiation, propagation, and resistance to standard therapies have been isolated from human solid tumors, including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display “tumor-initiating/stemness” properties, including the expression of CIC-associated markers (e.g., CD44, CD24, ALDH-1, EpCAM, Lgr5), multipotency, and tumorigenicity following injection in immunodeficient mice. The immune profile of these cells was assessed by phenotype analysis and by in vitro stimulation of PBMCs with CICs as a source of Ags. CICs, compared with non-CIC counterparts, showed weak immunogenicity. This feature correlated with the expression of high levels of immu- nomodulatory molecules, such as IL-4, and with CIC-mediated inhibitory activity for anti-tumor T cell responses. CIC-associated IL-4 was found to be responsible for this negative function, which requires cell-to-cell contact with T lymphocytes and which is impaired by blocking IL-4 signaling. In addition, the CRC-associated Ag COA-1 was found to be expressed by CICs and to represent, in an autologous setting, a target molecule for anti-tumor T cells. Our study provides relevant information that may contribute to designing new immunotherapy protocols to target CICs in CRC patient

    The Italian Network for Tumor Biotherapy (NIBIT): Getting together to push the field forward

    Get PDF
    As for a consolidated tradition, the 5th annual meeting of the Italian Network for Cancer Biotherapy took place in the Certosa of Pontignano, a Tuscan monastery, on September 20–22, 2007. The congress gathered more than 40 Italian leading groups representing academia, biotechnology and pharmaceutical industry. Aim of the meeting was to share new advances in cancer bio-immunotherapy and to promote their swift translation from pre-clinical research to clinical applications. Several topics were covered including: a) molecular and cellular mechanisms of tumor escape; b) therapeutic antibodies and recombinant constructs; c) clinical trials up-date and new programs; d) National Cooperative Networks and their potential interactions; e) old and new times in cancer immunology, an "amarcord". Here, we report the main issues discussed during the meeting

    The Involvement of RCAS1 in Creating a Suppressive Tumor Microenvironment in Patients with Salivary Gland Adenocarcinoma

    Get PDF
    The tumor microenvironment is the tissue that determines the growth and progression of the tumor as well as its ability to initiate metastases. The aim of the present study has been to evaluate the role of RCAS1 in creating the suppressive tumor microenvironment in cases of parotid adenocarcinoma. The tissue samples of salivary gland adenocarcinomas and their stroma and the palatine tonsils which constituted the reference tissue sample group were obtained during routine surgical procedures. The immunoreactivity of RCAS1, CD3, CD25, CD68, CD69, and Foxp3 antigens was then evaluated by using the immunohistochemistry method. The patient’s consent was obtained in each case. A statistically significantly higher RCAS1 immunoreactivity level was found in the adenocarcinoma tissue samples in comparison to that found in the stromal tissue samples. A statistically significantly higher RCAS1 immunoreactivity was also identified in the adenocarcinoma tissue samples derived from patients who had lymph node metastases in comparison to patients without such metastases. Additionally, we observed the presence of RCAS1-positive macrophages in the stromal tissue samples. The infiltration of CD68-positive cells was significantly stronger in the adenocarcinoma and stromal tissue slides than in the reference group tissue slides; moreover, the infiltration was a good deal more prominent in the stromal tissue than in the adenocarcinoma tissue. The CD68 immunoreactivity levels in both the tumor and stromal tissue samples were found to be significantly higher in those patients who had lymph node metastases than in the patients without such metastases. Additionally, the infiltration of CD3- and CD25-positive cells was more prominent in the reference tissue slides than in the adenocarcinoma and stromal tissue slides, and was stronger in the adenocarcinoma tissue than in the stromal tissue. Furthermore, the infiltration of Foxp3-positive cells was seen exclusively in the stroma whereas it was not even detected in the adenocarcinoma tissue. Lastly, the Foxp3-positive cell infiltration was more prominent in the stromal tissue than in the reference group tissue. The present study demonstrates that RCAS1 expression by both tumor cells and tumor-associated macrophages may participate in creating the immunosuppressive microenvironment in parotid gland adenocarcinoma, thus promoting tumor development as well as metastases

    Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    Get PDF
    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF

    Th Inducing POZ-Kruppel Factor (ThPOK) Is a Key Regulator of the Immune Response since the Early Steps of Colorectal Carcinogenesis

    Get PDF
    We purposed to evaluate the role of Th inducing POZ-Kruppel Factor (ThPOK), a transcriptional regulator of T cell fate, in tumour-induced immune system plasticity in colorectal carcinogenesis. The amounts of CD4+, CD8+ and CD56+ and ThPOK+ cells infiltrate in normal colorectal mucosa (NM), in dysplastic aberrant crypt foci (microadenomas, MA), the earliest detectable lesions in colorectal carcinogenesis, and in colorectal carcinomas (CRC), were measured, and the colocalization of ThPOK with the above-mentioned markers of immune cells was evaluated using confocal microscopy. Interestingly, ThPOK showed a prominent increase since MA. A strong colocalization of ThPOK with CD4 both in NM and in MA was observed, weaker in carcinomas. Surprisingly, there was a peak in the colocalization levels of ThPOK with CD8 in MA, which was evident, although to a lesser extent, in carcinomas, too. In conclusion, according to the data of the present study, ThPOK may be considered a central regulator of the earliest events in the immune system during colorectal cancer development, decreasing the immune response against cancer cells

    Expression of MAGE-C1/CT7 and MAGE-C2/CT10 Predicts Lymph Node Metastasis in Melanoma Patients

    Get PDF
    MAGE-C1/CT7 and MAGE-C2/CT10 are members of the large MAGE family of cancer-testis (CT) antigens. CT antigens are promising targets for immunotherapy in cancer because their expression is restricted to cancer and germ line cells and a proportion of cancer patients presents with immune responses against CT antigens, which clearly demonstrates their immunogenicity. This study investigates the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary and metastatic melanoma. Immunohistochemical staining of tissue microarrays that consisted of 59 primary malignant melanomas of the skin, 163 lymph node and distant melanoma metastases and 68 melanoma cell lines was performed. We found MAGE-C1/CT7 expression in 15 out of 50 (24%) primary melanomas and 15 out of 50 (24%) cell lines, whereas MAGE-C2/CT10 was detected in 17 out of 51 (33%) primary melanomas and 14 out of 68 (17%) cell lines. MAGE-C1/CT7 and MAGE-C2/CT10 were both detected in 40% of melanoma metastases. Patients with MAGE-C1/CT7 or MAGE-C2/CT10 positive primary melanoma had significantly more lymph node metastases (p = 0.005 and p<0.001, resp.). Prediction of lymph node metastasis by MAGE-C1/CT7 and MAGE-C2/CT10 was independent of tumor cell proliferation rate (Ki67 labeling index) in a multivariate analysis (p = 0.01). Our results suggest that the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary melanoma is a potent predictor of sentinel lymph node metastasis
    corecore