2,079 research outputs found
Coupling of Josephson flux-flow oscillators to an external RC load
We investigate by numerical simulations the behavior of the power dissipated
in a resistive load capacitively coupled to a Josephson flux flow oscillator
and compare the results to those obtained for a d.c. coupled purely resistive
load. Assuming realistic values for the parameters R and C, both in the high-
and in the low-Tc case the power is large enough to allow the operation of such
a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4
PostScript figures. To appear in Supercond. Sci. Techno
Bulk Composition of GJ 1214b and other sub-Neptune exoplanets
GJ1214b stands out among the detected low-mass exoplanets, because it is, so
far, the only one amenable to transmission spectroscopy. Up to date there is no
consensus about the composition of its envelope although most studies suggest a
high molecular weight atmosphere. In particular, it is unclear if hydrogen and
helium are present or if the atmosphere is water dominated. Here, we present
results on the composition of the envelope obtained by using an internal
structure and evolutionary model to fit the mass and radius data. By examining
all possible mixtures of water and H/He, with the corresponding opacities, we
find that the bulk amount of H/He of GJ1214b is at most 7% by mass. In general,
we find the radius of warm sub-Neptunes to be most sensitive to the amount of
H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e,
Kepler-36c and Kepler-68b) but two (Kepler-11e and Kepler-30b) of the
discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e
and Kepler-30b have 10-18% and 5-15% bulk H/He. Conversely, little can be
determined about the H2O or rocky content of sub-Neptune planets. We find that
although a 100% water composition fits the data for GJ1214b, based on formation
constraints the presence of heavier refractory material on this planet is
expected, and hence, so is a component lighter than water required. A robust
determination by transmission spectroscopy of the composition of the upper
atmosphere of GJ1214b will help determine the extent of compositional
segregation between the atmosphere and envelope.Comment: Updated the masses and radii of the Kepler-11 system, added
Kepler-30b as well in the analysis. Accepted in ApJ, 39 pages, 9 figure
Sound production in red-bellied piranhas (<i>Pygocentrus nattereri</i>, Kner): an acoustical, behavioural and morphofunctional study
Piranhas are known to be sound-producing animals. Nevertheless, the biological significance of piranha calls remains unclear because sounds have been recorded only when specimens were held by hand or trapped in a gill net. These sounds are generated by rapid contractions of sonic muscles that insert on a broad tendon surrounding ventrally the cranial sac of the swimbladder. The piranha swimbladder is thought to play an important role in sound production as an impedance-matching device and as a resonator. However, the vibratory capacities of the cranial and caudal sacs and the exact role of both sacs in sound production remain poorly understood. In this study, three sounds were each associated to a specific behaviour. The first sound (type 1) was produced during frontal display; it had numerous pulses and lasted 140!±17 ms, with a fundamental frequency of 120±4 Hz. It corresponded to the sound made by hand-held fishes. The second sound (type 2) was produced during circling and fighting behaviour; it was a single pulse lasting 36±8 ms, with a fundamental frequency of 43±10 Hz. The third sound (type 3) corresponded to chasing behaviour and comprised three to four pulses, each lasting 3±1 ms, with a fundamental frequency of 1739±18 Hz. Using a laser vibrometer to study the swimbladder displacement when stimulated at different frequencies, it was demonstrated that the first two sounds corresponded to the swimbladder mechanism. By contrast, the third sound was associated with the jaw mechanism. The vibrometer indicated that the swimbladder is a highly damping structure, simply copying the sonic muscle contraction rate. This study provides two interesting insights. First, it shows the relationships between three kinds of piranha sound and three specific behaviours. Second, using muscle stimulation at different rates, it shows which simultaneous conditions are required for production of sound in this species. Swimbladder calls were produced by a muscle contraction rate of approximately 100 Hz because this periodicity allowed the swimbladder to vibrate. At this frequency range, the contraction–relaxation cycles of the swimbladder muscles engendered wall displacements that had short amplitudes and with only a small variability between them
Message handling system concepts and services in a land mobile satellite system
A network architecture containing the capabilities offered by the Message Handling System (MHS) to the PRODAT Land Mobile Satellite System (LMSS) is described taking into account the constraints of a preexisting satellite system which is going to become operational. The mapping between MHS services and PRODAT requirements is also reported and shows that the supplied performance can be significantly enhanced to both fixed and mobile users. The impact of the insertion of additional features on the system structure, especially on the centralized control unit, are also addressed
A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions
The recent discovery and characterization of the diversity of the atmospheres
of exoplanets and brown dwarfs calls for the development of fast and accurate
analytical models. We quantify the accuracy of the analytical solution derived
in paper I for an irradiated, non-grey atmosphere by comparing it to a
state-of-the-art radiative transfer model. Then, using a grid of numerical
models, we calibrate the different coefficients of our analytical model for
irradiated solar-composition atmospheres of giant exoplanets and brown dwarfs.
We show that the so-called Eddington approximation used to solve the angular
dependency of the radiation field leads to relative errors of up to 5% on the
temperature profile. We show that for realistic non-grey planetary atmospheres,
the presence of a convective zone that extends to optical depths smaller than
unity can lead to changes in the radiative temperature profile on the order of
20% or more. When the convective zone is located at deeper levels (such as for
strongly irradiated hot Jupiters), its effect on the radiative atmosphere is
smaller. We show that the temperature inversion induced by a strong absorber in
the optical, such as TiO or VO is mainly due to non-grey thermal effects
reducing the ability of the upper atmosphere to cool down rather than an
enhanced absorption of the stellar light as previously thought.
Finally, we provide a functional form for the coefficients of our analytical
model for solar-composition giant exoplanets and brown dwarfs. This leads to
fully analytical pressure-temperature profiles for irradiated atmospheres with
a relative accuracy better than 10% for gravities between 2.5m/s^2 and 250
m/s^2 and effective temperatures between 100 K and 3000 K. This is a great
improvement over the commonly used Eddington boundary condition.Comment: Accepted in A&A, models are available at
http://www.oca.eu/parmentier/nongrey or in CD
Tomonaga-Luttinger physics in electronic quantum circuits
In one-dimensional conductors, interactions result in correlated electronic
systems. At low energy, a hallmark signature of the so-called
Tomonaga-Luttinger liquids (TLL) is the universal conductance curve predicted
in presence of an impurity. A seemingly different topic is the quantum laws of
electricity, when distinct quantum conductors are assembled in a circuit. In
particular, the conductances are suppressed at low energy, a phenomenon called
dynamical Coulomb blockade (DCB). Here we investigate the conductance of
mesoscopic circuits constituted by a short single-channel quantum conductor in
series with a resistance, and demonstrate a proposed link to TLL physics. We
reformulate and establish experimentally a recently derived phenomenological
expression for the conductance using a wide range of circuits, including carbon
nanotube data obtained elsewhere. By confronting both conductance data and
phenomenological expression with the universal TLL curve, we demonstrate
experimentally the predicted mapping between DCB and the transport across a TLL
with an impurity.Comment: 9p,6fig+SI; to be published in nature comm; v2: mapping extended to
finite range interactions, added discussion and SI material, added reference
Primary thermometry triad at 6 mK in mesoscopic circuits
Quantum physics emerge and develop as temperature is reduced. Although
mesoscopic electrical circuits constitute an outstanding platform to explore
quantum behavior, the challenge in cooling the electrons impedes their
potential. The strong coupling of such micrometer-scale devices with the
measurement lines, combined with the weak coupling to the substrate, makes them
extremely difficult to thermalize below 10 mK and imposes in-situ thermometers.
Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale
mesoscopic circuits. The thermometry methods are established by the comparison
of three in-situ primary thermometers, each involving a different underlying
physics. The employed combination of quantum shot noise, quantum back-action of
a resistive circuit and conductance oscillations of a single-electron
transistor covers a remarkably broad spectrum of mesoscopic phenomena. The
experiment, performed in vacuum using a standard cryogen-free dilution
refrigerator, paves the way toward the sub-millikelvin range with additional
thermalization and refrigeration techniques.Comment: Article and Supplementar
- …
