764 research outputs found

    Large-N mesons

    Get PDF
    We present an update of our project of computing the meson spectrum and decay constants in large-N QCD. The results are obtained in the quenched approximation with the Wilson fermion action for N = 2, 3, 4, 5, 6, 7 and 17 and extrapolated to infinite N. We non-perturbatively determine the renormalization factors for local quark bilinears that are needed to compute the decay constants. We extrapolate our SU(7) results to the continuum limit, employing four different lattice spacings.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Separation of Cultivars of Soybeans by Chemometric Methods Using Near Infrared Spectroscopy.

    Get PDF
    Made available in DSpace on 2018-03-13T00:35:06Z (GMT). No. of bitstreams: 1 727942750021PB.pdf: 1034238 bytes, checksum: 5285573c242e3cac13b8cf10044c4eb3 (MD5) Previous issue date: 2018-03-12bitstream/item/173795/1/72794-275002-1-PB.pd

    The meson spectrum in large-N QCD

    Get PDF
    We present lattice results on the meson spectrum and decay constants in large-N QCD. The results are obtained in the quenched approximation for N = 2,3,4,5,6,7 and 17 and extrapolated to N = ∞. Xth Quark Confinement and the Hadron Spectrum

    Finite-size effects on a lattice calculation

    Full text link
    We study in this paper the finite-size effects of a non-periodic lattice on a lattice calculation. To this end we use a finite lattice equipped with a central difference derivative with homogeneous boundary conditions to calculate the bosonic mass associated to the Schwinger model. We found that the homogeneous boundary conditions produce absence of fermion doubling and chiral invariance, but we also found that in the continuum limit this lattice model does not yield the correct value of the boson mass as other models do. We discuss the reasons for this and, as a result, the matrix which cause the fermion doubling problem is identified.Comment: 8 pages, no figures, extended version, five references adde

    Shear and bulk viscosities for pure glue matter

    Full text link
    Shear η\eta and bulk ζ\zeta viscosities are calculated in a quasiparticle model within a relaxation time approximation for pure gluon matter. Below TcT_c the confined sector is described within a quasiparticle glueball model. Particular attention is paid to behavior of the shear and bulk viscosities near TcT_c. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state it is possible to describe the temperature dependence of the shear viscosity to entropy ratio η/s\eta/s and the bulk viscosity to entropy ratio ζ/s\zeta/s in reasonable agreement with available lattice data but absolute values of the ζ/s\zeta/s ratio underestimate the upper limits of this ratio in the lattice measurements typically by an order of magnitude.Comment: 8 pages, 4 figures; the published versio

    Kinematic and dynamic assessment of trunk exoskeleton

    Get PDF
    In Industry 4.0, wearable exoskeletons have been proposed as collaborative robotic devices to partially assist workers in heavy and dangerous tasks. Despite the recent researches, proposed prototypes and commercial products, some open issues concerning development, improvements and testing still exist. The current pilot study proposed the assessment of a proper biomechanical investigation of passive trunk exoskeleton effects on the human body. One healthy subject performed walking, stoop and semisquat tasks without, with exoskeleton no support and with exoskeleton with support. 3D Kinematic (angles, translations) and dynamic (interface forces) parameters of both human and exoskeleton were estimated. Some differences were pointed out comparing task motions and exoskeleton conditions. The presented preliminary test revealed interesting results in terms of different human joints coordination, interface forces exchanged at contact points and possible misalignment between human and device. The present study could be considered as a starting point for the investigation of exoskeleton effectiveness and interaction with the user

    Lithium and proton conducting gel-type membranes

    Get PDF
    We review the characteristics and the properties of various types of gel-type, ionically conducting membranes. We have mainly investigated two classes of membranes, one characterized by lithium ion transport and the other characterized by proton conductivity. We show that the former membranes are suitable to be used as separators in advanced lithium ion plastic batteries and that the latter show good promises to be considered as alternative, new separators in polymer electrolyte fuel cells. © 2003 Elsevier B.V. All rights reserved
    • …
    corecore