12,082 research outputs found
A review of fundamental equations of the mixture of a gas with small solid particles
Fluid dynamics of gas-particle flow and solid particle behavior in mixed flo
Probabilistic structural analysis of adaptive/smart/intelligent space structures
A three-bay, space, cantilever truss is probabilistically evaluated for adaptive/smart/intelligent behavior. For each behavior, the scatter (ranges) in buckling loads, vibration frequencies, and member axial forces are probabilistically determined. Sensitivities associated with uncertainties in the structure, material and load variables that describe the truss are determined for different probabilities. The relative magnitude for these sensitivities are used to identify significant truss variables that control/classify its behavior to respond as an adaptive/smart/intelligent structure. Results show that the probabilistic buckling loads and vibration frequencies increase for each truss classification, with a substantial increase for intelligent trusses. Similarly, the probabilistic member axial forces reduce for adaptive and intelligent trusses and increase for smart trusses
Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics
The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program
Women Reproductive Rights in India: Prospective Future.
Reproductive rights were established as a subset of the human rights. Parents have a basic human right to determine freely and responsibly the number and the spacing of their children. Issues regarding the reproductive rights are vigorously contested, regardless of the population’s socioeconomic level, religion or culture. Following review article discusses reproductive rights with respect to Indian context focusing on socio economic and cultural aspects. Also discusses sensitization of government and judicial agencies in protecting the reproductive rights with special focus on the protecting the reproductive rights of people with disability (mental illness and mental retardation)
A structure marker study for Pd_2Si formation: Pd moves in epitaxial Pd_2Si
A sample with the configuration Si (111)/single crystalline Pd_2Si/polycrystalline Pd_2Si/Pd is used to study the dominant moving species during subsequent Pd_2Si formation by annealing at 275 °C. The interface between monocrystalline and polycrystalline Pd_2Si is used as a marker to monitor the dominant moving species. The result shows that Pd is the dominant moving species in the monocrystal
Response of resonant gravitational wave detectors to damped sinusoid signals
Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes
Radiation Pressure Induced Instabilities in Laser Interferometric Detectors of Gravitational Waves
The large scale interferometric gravitational wave detectors consist of
Fabry-Perot cavities operating at very high powers ranging from tens of kW to
MW for next generations. The high powers may result in several nonlinear
effects which would affect the performance of the detector. In this paper, we
investigate the effects of radiation pressure, which tend to displace the
mirrors from their resonant position resulting in the detuning of the cavity.
We observe a remarkable effect, namely, that the freely hanging mirrors gain
energy continuously and swing with increasing amplitude. It is found that the
`time delay', that is, the time taken for the field to adjust to its
instantaneous equilibrium value, when the mirrors are in motion, is responsible
for this effect. This effect is likely to be important in the optimal operation
of the full-scale interferometers such as VIRGO and LIGO.Comment: 27 pages, 11 figures, RevTex styl
Update-Efficient Regenerating Codes with Minimum Per-Node Storage
Regenerating codes provide an efficient way to recover data at failed nodes
in distributed storage systems. It has been shown that regenerating codes can
be designed to minimize the per-node storage (called MSR) or minimize the
communication overhead for regeneration (called MBR). In this work, we propose
a new encoding scheme for [n,d] error- correcting MSR codes that generalizes
our earlier work on error-correcting regenerating codes. We show that by
choosing a suitable diagonal matrix, any generator matrix of the [n,{\alpha}]
Reed-Solomon (RS) code can be integrated into the encoding matrix. Hence, MSR
codes with the least update complexity can be found. An efficient decoding
scheme is also proposed that utilizes the [n,{\alpha}] RS code to perform data
reconstruction. The proposed decoding scheme has better error correction
capability and incurs the least number of node accesses when errors are
present.Comment: Submitted to IEEE ISIT 201
- …
