3 research outputs found

    Multiplex PCR/liquid chromatography assay for detection of gene rearrangements: application to RB1 gene

    No full text
    Screening for large gene rearrangements is established as an important part of molecular medicine but is also challenging. A variety of robust methods can detect whole-gene deletions, but will fail to detect more subtle rearrangements that may involve a single exon. In this paper, we describe a new, versatile and robust method to assess exon copy number, called multiplex PCR/liquid chromatography assay (MP/LC). Multiple exons are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC), and quantitated by fluorescent detection using a post-column intercalation dye. The relative peak intensities for each target directly reflect exon copy number. This novel technique was used to screen a panel of 121 unrelated retinoblastoma patients who were tested previously using a reference strategy. MP/LC correctly scored all deletions and demonstrated a previously undetected RB1 duplication, the first to be described. MP/LC appears to be an easy, versatile, and cost-effective method, which is particularly relevant to denaturing HPLC (DHPLC) users since it broadens the spectrum of available applications on a DHPLC system

    Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study

    No full text
    Nearly one-half of BRCA1 and BRCA2 sequence variations are variants of uncertain significance (VUSs) and are candidates for splice alterations for example, by disrupting/creating splice sites. As out-of-frame splicing defects lead to a marked reduction of the level of the mutant mRNA cleared through nonsense-mediated mRNA decay, a cDNA-based test was developed to show the resulting allelic imbalance (AI). Fifty-four VUSs identified in 53 hereditary breast/ovarian cancer (HBOC) patients without BRCA1/2 mutation were included in the study. Two frequent exonic single-nucleotide polymorphisms on both BRCA1 and BRCA2 were investigated by using a semiquantitative single-nucleotide primer extension approach and the cDNA allelic ratios obtained were corrected using genomic DNA ratios from the same sample. A total of five samples showed AI. Subsequent transcript analyses ruled out the implication of VUS on AI and identified a deletion encompassing BRCA2 exons 12 and 13 in one sample. No sequence abnormality was found in the remaining four samples, suggesting implication of cis- or trans-acting factors in allelic expression regulation that might be disease causative in these HBOC patients. Overall, this study showed that AI screening is a simple way to detect deleterious splicing defects and that a major role for VUSs and deep intronic mutations in splicing anomalies is unlikely in BRCA1/2 genes. Methods to analyze gene expression and identify regulatory elements in BRCA1/2 are now needed to complement standard approaches to mutational analysis
    corecore