452 research outputs found
Current-induced vortex dynamics in Josephson-junction arrays: Imaging experiments and model simulations
We study the dynamics of current-biased Josephson-junction arrays with a
magnetic penetration depth smaller than the lattice spacing. We compare the
dynamics imaged by low-temperature scanning electron microscopy to the vortex
dynamics obtained from model calculations based on the resistively-shunted
junction model, in combination with Maxwell's equations. We find three bias
current regions with fundamentally different array dynamics. The first region
is the subcritical region, i.e. below the array critical current I_c. The
second, for currents I above I_c, is a "vortex region", in which the response
is determined by the vortex degrees of freedom. In this region, the dynamics is
characterized by spatial domains where vortices and antivortices move across
the array in opposite directions in adjacent rows and by transverse voltage
fluctuations. In the third, for still higher currents, the dynamics is
dominated by coherent-phase motion, and the current-voltage characteristics are
linear.Comment: 10 pages, with eps figures. To appear in Phys. Rev.
Single-vortex-induced voltage steps in Josephson-junction arrays
We have numerically and analytically studied ac+dc driven Josephson-junction
arrays with a single vortex or with a single vortex-antivortex pair present. We
find single-vortex steps in the voltage versus current characteristics (I-V) of
the array. They correspond microscopically to a single vortex phase-locked to
move a fixed number of plaquettes per period of the ac driving current. In
underdamped arrays we find vortex motion period doubling on the steps. We
observe subharmonic steps in both underdamped and overdamped arrays. We
successfully compare these results with a phenomenological model of vortex
motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex
pair displays fractional voltage steps. A possible connection of these results
to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in
Journal of Physics, Condensed Matte
The time to extinction for an SIS-household-epidemic model
We analyse a stochastic SIS epidemic amongst a finite population partitioned
into households. Since the population is finite, the epidemic will eventually
go extinct, i.e., have no more infectives in the population. We study the
effects of population size and within household transmission upon the time to
extinction. This is done through two approximations. The first approximation is
suitable for all levels of within household transmission and is based upon an
Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an
endemic level relying on a large population. The second approximation is
suitable for high levels of within household transmission and approximates the
number of infectious households by a simple homogeneously mixing SIS model with
the households replaced by individuals. The analysis, supported by a simulation
study, shows that the mean time to extinction is minimized by moderate levels
of within household transmission
Effects of Electronic Correlations on the Thermoelectric Power of the Cuprates
We show that important anomalous features of the normal-state thermoelectric
power S of high-Tc materials can be understood as being caused by doping
dependent short-range antiferromagnetic correlations. The theory is based on
the fluctuation-exchange approximation applied to Hubbard model in the
framework of the Kubo formalism. Firstly, the characteristic maximum of S as
function of temperature can be explained by the anomalous momentum dependence
of the single-particle scattering rate. Secondly, we discuss the role of the
actual Fermi surface shape for the occurrence of a sign change of S as a
function of temperature and doping.Comment: 4 pages, with eps figure
Transverse depinning and melting of a moving vortex lattice in driven periodic Josephson junction arrays
We study the effect of thermal fluctuations in a vortex lattice driven in the
periodic pinning of a Josephson junction array. The phase diagram current ()
vs. temperature () is studied. Above the critical current we find a
moving vortex lattice (MVL) with anisotropic Bragg peaks. For large currents
, there is a melting transition of the MVL at . When
applying a small transverse current to the MVL, there is no dissipation at low
. We find an onset of transverse vortex motion at a transverse depinning
temperature .Comment: 4 pages, 4 figures, Figure 2 changed, added new reference
Genetic variants linked to education predict longevity
Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members' polygenic profile score for education to predict their parents' longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total ndeaths= 79,702) and ∼2.4% lower risk for fathers (total ndeaths= 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity
Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays
We study the dependence of the transport properties of square Josephson
Junctions arrays with the direction of the applied dc current, both
experimentally and numerically. We present computational simulations of
current-voltage curves at finite temperatures for a single vortex in the array
(), and experimental measurements in
arrays under a low magnetic field corresponding to . We find that
the transverse voltage vanishes only in the directions of maximum symmetry of
the square lattice: the [10] and [01] direction (parallel bias) and the [11]
direction (diagonal bias). For orientations different than the symmetry
directions, we find a finite transverse voltage which depends strongly on the
angle of the current. We find that vortex motion is pinned in the [10]
direction (), meaning that the voltage response is insensitive to small
changes in the orientation of the current near . We call this
phenomenon orientational pinning. This leads to a finite transverse critical
current for a bias at and to a transverse voltage for a bias at
. On the other hand, for diagonal bias in the [11] direction the
behavior is highly unstable against small variations of , leading to a
rapid change from zero transverse voltage to a large transverse voltage within
a few degrees. This last behavior is in good agreement with our measurements in
arrays with a quasi-diagonal current drive.Comment: 9 pages, 9 figure
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
Preparative fractionation of a random copolymer (SAN) with respect to either chain length or chemical composition
The possibilities to fractionate copolymers with respect to their chemical
composition on a preparative scale by means of the establishment of
liquid/liquid phase equilibria were studied for random copolymers of styrene
and acrylonitrile (san). Experiments with solutions of san in toluene have
shown that fractionation does in this quasi-binary system, where demixing
results from marginal solvent quality, take place with respect to the chain
length of the polymer only. On the other hand, if phase separation is induced
by a second, chemically different polymer one can find conditions under which
fractionation with respect to composition becomes dominant. This opportunity is
documented for the quasi-ternary system dmac/san/polystyrene, where the solvent
dimethyl acetamide is completely miscible with both polymers. The theoretical
reasons for the different fractionation mechanisms are discussed
Numerical studies of the phase diagram of layered type II superconductors in a magnetic field
We report on simulations of layered superconductors using the
Lawrence-Doniach model in the framework of the lowest Landau level
approximation. We find a first order phase transition with a dependence
which agrees very well with the experimental ``melting'' line in YBaCuO. The
transition is not associated with vortex lattice melting, but separates two
vortex liquid states characterised by different degrees of short-range
crystalline order and different length scales of correlations between vortices
in different layers. The transition line ends at a critical end-point at low
fields. We find the magnetization discontinuity and the location of the lower
critical magnetic field to be in good agreement with experiments in YBaCuO.
Length scales of order parameter correlations parallel and perpendicular to the
magnetic field increase exponentially as 1/T at low temperatures. The dominant
relaxation time scales grow roughly exponentially with these correlation
lengths. We find that the first order phase transition persists in the presence
of weak random point disorder but can be suppressed entirely by strong
disorder. No vortex glass or Bragg glass state is found in the presence of
disorder. The consistency of our numerical results with various experimental
features in YBaCuO, including the dependence on anisotropy, and the temperature
dependence of the structure factor at the Bragg peaks in neutron scattering
experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR
- …