14,721 research outputs found

    Lagrange-Poincare field equations

    Get PDF
    The Lagrange-Poincare equations of classical mechanics are cast into a field theoretic context together with their associated constrained variational principle. An integrability/reconstruction condition is established that relates solutions of the original problem with those of the reduced problem. The Kelvin-Noether theorem is formulated in this context. Applications to the isoperimetric problem, the Skyrme model for meson interaction, metamorphosis image dynamics, and molecular strands illustrate various aspects of the theory.Comment: Submitted to Journal of Geometry and Physics, 45 pages, 1 figur

    Ventricular tachycardia/fibrillation detection algorithm for 24/7 personal wireless heart monitoring

    Full text link
    This paper describes a Ventricular Tachycardia/Fibrillation (VT/VF) detection algorithm that is specifically designed for a 24/7 personal wireless heart monitoring system. This monitoring system uses Bluetooth enabled biosensors and smart phones to monitor continuously cardiac patients' vital signs. Our VT/VF algorithm is optimized for continuous real-time monitoring on smart phones with a high sensitivity and specificity. We studied and compared existing VT/VF algorithms and selected the one which suited best our requirements. However, we modified and improved the existing algorithm for the smart phone to achieve better performance results. We tested the algorithm on full-length signals from the physionet CU, MIT-db and MIT-vfdb databases [16] without any pre-selection of VT/VF or normal QRS-complex signals. We achieved 97% sensitivity, 98% accuracy and 98% specificity for our implementation which is excellent compared to existing algorithms. © Springer-Verlag Berlin Heidelberg 2007

    Internal relaxation time in immersed particulate materials

    Full text link
    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams

    Cavitation-induced force transition in confined viscous liquids under traction

    Full text link
    We perform traction experiments on simple liquids highly confined between parallel plates. At small separation rates, we observe a simple response corresponding to a convergent Poiseuille flow. Dramatic changes in the force response occur at high separation rates, with the appearance of a force plateau followed by an abrupt drop. By direct observation in the course of the experiment, we show that cavitation accounts for these features which are reminiscent of the utmost complex behavior of adhesive films under traction. Surprisingly enough, this is observed here in purely viscous fluids.Comment: Submitted to Physical Review Letters on May 31, 2002. Related informations on http://www.crpp.u-bordeaux.fr/tack.htm

    Molekulare Signalwege der aseptischen Endoprothesenlockerung (Molecular pathways in aseptic loosening of orthopaedic endoprosthesis)

    Full text link
    Abstract Operative joint replacement to treat disabling joint conditions secondary to degenerative and inflammatory arthritides has become one of the most efficacious and cost-effective procedures to relieve pain and restore joint function. However, prosthetic implants are not built to last forever and osteolysis and aseptic loosening has been associated with prosthetic arthroplasties since their introduction. The functional life of a synthetic joint is influenced by many factors including the material of the implant, operation procedures and the surgeon involved, as well as patient-related factors. Although promising developments have been achieved in this field, more than 10% of all implants still have to undergo operative revision within 15 years after the initial operation. Failure due to sepsis, fractures and dislocations has become rare; premature loosening of implants on the other hand is becoming much more important. Prosthetic loosening without concurrent infection or trauma is called aseptic loosening. It is generally accepted that small particles ("wear debris") and activated macrophages play a key role in aseptic loosening. The pathophysiology of this condition, however, is still not very well characterized. In this article, we review the molecular mechanisms and signal pathways that were unravelled as responsible factors for loosening orthopaedic implants. Finally, we discuss possible novel strategies for future therapeutic approaches

    Bytecode-Based Multiple Condition Coverage: An Initial Investigation

    Get PDF
    Masking occurs when one condition prevents another from influencing the output of a Boolean expression. Adequacy criteria such as Multiple Condition Coverage (MCC) overcome masking within one expression, but offer no guarantees about subsequent expressions. As a result, a Boolean expression written as a single complex statement will yield more effective test cases than when written as a series of simple expressions. Many approaches to automated test case generation for Java operate not on the source code, but on bytecode. The transformation to bytecode simplifies complex expressions into multiple expressions, introducing masking. We propose Bytecode-MCC, a new adequacy criterion designed to group bytecode expressions and reformulate them into complex expressions. Bytecode-MCC should produce test obligations that are more likely to reveal faults in program logic than tests covering the simplified bytecode.A preliminary study shows potential improvements from attaining Bytecode-MCC coverage. However, Bytecode-MCC is difficult to optimize, and means of increasing coverage are needed before the technique can make a difference in practice. We propose potential methods to improve coverage

    Towards the Equation of State of Classical SU(2) Lattice Gauge Theory

    Get PDF
    We determine numerically the full complex Lyapunov spectrum of SU(2) Yang-Mills fields on a 3-dimensional lattice from the classical chaotic dynamics. The equation of state, S(E), is determined from the Kolmogorov-Sinai entropy extrapolated to the large size limit.Comment: 12 pages, 8 PS figures, LaTe
    corecore