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Abstract. Masking occurs when one condition prevents another from influenc-
ing the output of a Boolean expression. Adequacy criteria such as Multiple Con-
dition Coverage (MCC) overcome masking within one expression, but offer no
guarantees about subsequent expressions. As a result, a Boolean expression writ-
ten as a single complex statement will yield more effective test cases than when
written as a series of simple expressions. Many approaches to automated test
case generation for Java operate not on the source code, but on bytecode. The
transformation to bytecode simplifies complex expressions into multiple expres-
sions, introducing masking. We propose Bytecode-MCC, a new adequacy crite-
rion designed to group bytecode expressions and reformulate them into complex
expressions. Bytecode-MCC should produce test obligations that are more likely
to reveal faults in program logic than tests covering the simplified bytecode.
A preliminary study shows potential improvements from attaining Bytecode-
MCC coverage. However, Bytecode-MCC is difficult to optimize, and means of
increasing coverage are needed before the technique can make a difference in
practice. We propose potential methods to improve coverage.

Keywords: Search-Based Test Generation, Adequacy Criteria, Coverage Criteria

1 Introduction

For any reasonably complex software project, testing alone cannot prove the absence
of faults. As we cannot know what faults exist a priori, dozens of adequacy crite-
ria—ranging from the measurement of structural coverage to the detection of synthetic
faults [8]—have been proposed to judge testing efforts. In theory, if the goals set forth
by such criteria are fulfilled, tests should be adequate at detecting faults related to the
focus of that criterion. Adequacy criteria such as Statement or Branch Coverage have
proven popular in both research and practice, as they are easy to measure, offer clear
guidance to developers, and present an indicator of progress [9]. Adequacy criteria also
play an important role in search-based test generation, as they offer optimization targets
that shape the resulting test suite [16].

Masking occurs when one condition—an atomic Boolean variable or subexpression—
prevents another condition from influencing the output of the expression. Even if a fault
in a Boolean expression is triggered, other parts of that expression—or future expres-
sions encountered along the path of execution—can prevent that fault from triggering
an observable failure during test execution.

Sophisticated logic-based adequacy criteria such as Multiple Condition Coverage
(MCC) or Multiple Condition/Decision Coverage (MC/DC) are designed to overcome
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masking within a single expression. However, they can offer no guarantees about mask-
ing in subsequent expressions. As a result, such criteria are sensitive to how expressions
are written [8]. A Boolean expression written as a single complex statement will more
effective test cases than the same expression written as multiple simple expressions, as
the adequacy criterion will not prevent masking between expressions.

Many approaches to automated analysis and test case generation for Java operate
not on the source code, but on the resulting bytecode [4,19]. The transformation from
source to bytecode translates complex expressions into multiple simple expressions,
introducing the risk of masking between expressions. This could limit the fault-finding
potential of bytecode-based adequacy criteria. To overcome this limitation, we propose
a new variant of Multiple Condition Coverage.

Our approach, Bytecode-MCC, is a new test coverage criteria that prescribes a set
of test obligations—goals that must be satisfied by test cases—for a class-under-test.
Bytecode-MCC groups related Boolean expressions from the bytecode, reformulates
the grouping into a single complex expression, and calculates all possible combinations
of conditions within the constructed expression. Bytecode-MCC should produce test
obligations that—when satisfied—are more likely to reveal faults in the program logic
than tests providing simple coverage over the simplified bytecode.

Bytecode-MCC can be used to measure the power of existing test suites or as a target
for automated test generation. To examine both scenarios, we have implemented an al-
gorithm to generate test obligations and measure coverage in the EvoSuite search-based
test generation framework [4]. We have also implemented a fitness function within Evo-
Suite intended to enable the automated generation of test suites.

We conducted a preliminary study examining the effectiveness of test generation
targeting Bytecode-MCC on 109 faults from Defects4J—a database of real faults from
Java projects [10]. Results attained for the “Time” system, where targeting the combi-
nation of Bytecode-MCC and Branch Coverage yields an average of 92% Bytecode-
MCC coverage, yield an average 32.50%-35.00% likelihood of fault detection—well
over the overall average. This suggests the potential of approaches that can attain high
Bytecode-MCC coverage.

However, the results for other systems are more negative. Bytecode-MCC is diffi-
cult to optimize, and our fitness function does not offer sufficient feedback to guide test
generation. Additional search budget does not guarantee higher levels of coverage. This
suggests that Bytecode-MCC may be best used as a method of judging test suite quality,
rather than as a direct generation target. Simultaneously targeting Bytecode-MCC and
Branch Coverage improves coverage of Bytecode-MCC and improves the likelihood
of fault detection, as the fitness function for Branch Coverage offers more feedback to
the search process. Therefore, other fitness functions may offer the means to satisfy
Bytecode-MCC. Bytecode-MCC has potential to yield effective test suites if the identi-
fied limitations can be overcome. We propose suggestions on how to proceed in future
work and make our implementation available.

2 Background
Adequacy Criteria: Adequacy criteria are important in providing developers with the
guidance they need to test efficiently, as they identify inadequacies in the test suite. For
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example, if a given test does not reach and execute a statement, it is inadequate for
finding faults in that statement.

Each adequacy criterion prescribes a series of test obligations—goals that must be
met for testing to be considered “adequate” with respect to that criterion. Often, such
criteria are structured around particular program elements and faults associated with
those elements, such as statements, branches of control flow, or Boolean conditions [8].
When a criterion has been satisfied, the system is considered to be adequately tested
with respect to that element. Adequacy criteria have seen widespread use, as they offer
objective, measurable checklists [9].

In this study, we are concerned with adequacy criteria defined over Boolean deci-
sions, complete Boolean expressions within a program. Decisions can be broken into
simple conditions—atomic Boolean variables or subexpressions—connected with op-
erators such as and, or, xor, and not.

– Decision Coverage: This simple criterion requires that all decision statements eval-
uate to both possible outcomes—true and false. Given the expression (A or B),
the test suite (TT),(FF) attains decision coverage over that expression.

– Branch Coverage: The source code of a program can be broken into basic blocks—
sets of statements executed sequentially. Branches are decision statements that can
decide which basic blocks are executed, such as if, loop, and switch state-
ments. Branch Coverage requires that the test suite cover each outcome of all
branches. Improving branch coverage is a common objective in test generation [13].

– Multiple Condition Coverage (MCC): MCC requires test cases that guarantee all
possible combinations of condition outcomes within the decision to be executed at
least once. Given expression (A or B), MCC coverage requires the value combina-
tions (TF),(TT),(FF),(FT). MCC is more expensive to attain than Decision
Coverage, but offers greater potential fault-detection capability. Note that, in the
presence of short-circuit evaluation, infeasible outcomes are not required. In the
previous example, short-circuit evaluation would reduce the required test suite to
(FF),(FT),(T-).

Search-Based Software Test Generation: Selection of test inputs is generally a costly
manual task. However, given a measurable testing goal, input selection can be framed
as a search for the input that achieves that goal. Automation of input selection can
potentially reduce human effort and the time required for testing [13].

Meta-heuristic search provides a possible solution for test input generation. Given
scoring functions denoting closeness to the attainment of those goals—called fitness
functions—optimization algorithms can sample from a large and complex set of options
as guided by a chosen strategy (the metaheuristic). Metaheuristics are often inspired
by natural phenomena. For example, genetic algorithms evolve a group of candidate
solutions by filtering out bad “genes” and promoting fit solutions [4]. Due to the non-
linear nature of software, resulting from branching control structures, the search space
of a real-world program is large and complex. Metaheuristic search—by strategically
sampling from that space—can scale effectively to large problems. Such approaches
have been applied to a wide variety of testing scenarios [2]. Adequacy criteria are ideal
as test generation targets, as such criteria can be straightforwardly translated into the
fitness functions used to guide the search [16].



4

3 Bytecode-Based Multiple Condition Coverage

Masking occurs when a condition, Version 1: Complex Implementation
out_1 = (in_1 or in_2) and in_3;

Version 2: Simple Implementation

expr_1 = in_1 or in_2;
out_1 = expr_1 and in_3;

within a decision statement, has no ef-
fect on the value of the decision as a
whole. As an example, consider the triv-
ial program fragments to the right. The
program fragments have different struc-
tures, but are functionally equivalent.

Version 1 presents the full, complex expression. Version 2 is defined using interme-
diate variable expr 1. Given a decision of the form in 1 or in 2, the truth value
of in 1 is irrelevant if in 2 is true, so we state that in 1 is masked out. Masking can
have negative consequences on the testing process by preventing the effect of a fault
from propagating to a visible failure.

MCC is able to overcome masking within a single expression by requiring that all
possible combinations of condition values be attempted, meaning that non-masking test
cases must exist. However, MCC is sensitive to how expressions are written. Variable
in 3 can have a masking effect—when it is false, it determines the value of the
decision it is in. In the complex implementation, MCC would require test cases that
overcome this masking effect, showing the effect that in 1 and in 2 have on the over-
all decision. In the simple, multi-line case, we only require that in 3 be evaluated with
the overall expression expr 1.

Suppose this code fragment is faulty and the correct expression should have been
in 1 and in 2. Tests over the simplified implementation may miss this fault, while
any test set providing coverage of the complex implementation would reveal this fault.
This can have significant ramifications with respect to fault finding of test suites [8,7,18].
The simplified version can be more trivially satisfied, with fewer test cases, than cases
where the code is structured into fewer, more complex expressions. The complex ver-
sion will have more complex test obligations and will generally require more test cases,
but those test cases will generally have more fault revealing power [8].

Many approaches to automated analysis and test case generation for Java operate
not on the source code, but on the bytecode [4,19]. Bytecode is often easier to instru-
ment than the source code—for instance, it can be obtained without the source code be-
ing present—and bytecode-based techniques are often more efficient and scalable than
source code-based techniques [19]. Many state-of-the-art techniques compute coverage
and generate test cases by monitoring the instrumented bytecode [4].

The transformation from source to bytecode requires a similar simplification. Con-
sider the example depicted in Figure 1, where the source code is shown on the left
and the bytecode is shown on the right. The complex statement on the left is translated
into a series of simple expressions. As a result of this transformation, the risk of mask-
ing is introduced between expressions. As all expressions are maximally simplified, a
straight-forward implementation of MCC would be equivalent to Branch Coverage over
each individual statement.

Given concerns over the fault-revealing power of tests generated over simplified rep-
resentations of Boolean expressions [8,7]—as well as concerns over whether code cov-
erage attained over bytecode accurately predicts coverage over the source code [12]—
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Fig. 1: A complex Boolean expression. Source code is shown on the left, and its equiv-
alent bytecode is shown on the right.

test generation approaches able to account for this simplification may yield more effec-
tive and representative testing results.

To overcome the limitations imposed by the translation to a simplified program
structure, we propose a new variant of MCC for bytecode, Bytecode-MCC. Bytecode-
MCC groups related Boolean expressions, reformulates the grouping into a single com-
plex expression, and calculates all possible combinations of conditions within the con-
structed expression. Bytecode-MCC should produce test obligations that—when satisfied—
are likely to reveal faults in program logic.

Bytecode-MCC can be used to assess existing test suites as well as as a target for
automated test generation. To examine both scenarios, we have implemented an algo-
rithm to generate test obligations and measure coverage in the EvoSuite test generation
framework [4]. We have also implemented a fitness function intended to enable the
automated creation of Bytecode-MCC-satisfying test suites.

Our implementation of Bytecode-MCC as a fitness function and coverage
measurement mechanism in EvoSuite is available from

https://github.com/Srujanab09/evosuite.

3.1 Test Obligation Generation

To formulate the test obligations for Bytecode-MCC, we perform the following process:

1. Search the bytecode for Boolean expressions.
2. When an expression is detected, begin building a group of related expressions.
3. Add any subsequent Boolean expressions in the same bytecode label—a basic block

of sequentially executed expressions—to the grouping.
4. When a new label is reached, add any new Boolean expressions to that grouping.

https://github.com/Srujanab09/evosuite
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Fig. 2: A simple Java class. Source code is on the left and bytecode is on the right.

5. Stop when a label is reached with no Boolean expressions.
6. Formulate a truth table containing all evaluations of the gathered expressions.
7. Translate each row of the truth table into a test obligation.

For a given class and method, we inspect the bytecode to gather related Boolean
expressions. In the bytecode, expressions are grouped into labels. A label indicates
the start of a series of sequentially-executed expressions, and is a point that another
control-altering expression can jump to. While monitoring the bytecode, we start a
grouping when we detect a Boolean expression. Each Boolean expression in byte-
code is represented using a form of if-statement where a true outcome causes
a jump to another label. We add this if-statement to our grouping, noting the label that
is jumped to if the statement evaluates to true and where we resume execution if
the statement evaluates to false. We then continue to iterate over the code in the
current label, if any, adding additional if-statements to the table. We continue
parsing any labels jumped to by recorded statements for additional if-statements,
and subsequent labels. Once we reach a label without additional if-statements, we
stop collecting. For the sample code in Figure 2, we extract the following grouping:

Next, we can connect the grouped statements through the order they are executed
based on their evaluation: (1) We record the current label, where the expression resides.
(2) We record the label that is jumped to if the expression evaluates to true. (3) We
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record where execution resumes if the expression evaluates to false. This is either a
continuation of the current label, or a new label that is reached immediately after the
current expression. For the grouping above, we extract the following:

Expression Location True Jump Location False Jump Location
I4 L1899798671 L1871531303 L717117575
I9 L717117575 L1871531303 L1866234461
I14 L1866234461 L1871531303 L2064685037
I19 L2064685037 L1871531303 L1871531303

This information indicates the order in which I4 I9 I14 I19 Outcome Jump Location
True - - - L2089187484
False True - - L2089187484
False False True - L2089187484
False False False True L2089187484
False False False False L2089187484

expressions are evaluated, and the outcome once
they are evaluated. Using this information, we
can form a truth table containing all possible
paths through the gathered expressions. Each row
of this truth table corresponds to a concrete test obligation that we impose for the
Bytecode-MCC criterion. In order to achieve Bytecode-MCC, we need to cover all of
the rows of the table. The truth table for the gathered expressions is shown to the right.
From this table, the test obligations for the simple class in Figure 2 are: (I4 = True),
(I4 = False ∧ I9 = True), ((I4 = False ∧ I9 = False) ∧ I14 = True),
(((I4 = False ∧ I9 = False) ∧ I14 = False) ∧ I19 = True), and
(((I4 = False ∧ I9 = False) ∧ I14 = False) ∧ I19 = False)

3.2 Automated Test Generation to Satisfy Bytecode-MCC

Effective approaches to search-based generation require a fitness function that reports
not just the percentage of goals covered, but how close the suite is to covering the
remaining goals [15]. This feedback allows the search to efficiently maximize coverage
of the chosen criterion.

In the case of Branch Coverage, the fitness function calculates the branch distance
from the point where the execution path diverged from a targeted expression outcome.
If an undesired outcome is reached, the function describes how “close” the targeted
predicate was to the desired outcome. The fitness value of a test suite is measured by
executing all of its tests while tracking the distances d(b, Suite) for each branch.

FBC(Suite) =
∑︂
b∈B

v(d(b, Suite)) (1)

Note that v(...) is a normalization of the distance d(b, Suite) between 0-1. The value
of d(b, Suite), then, is calculated as follows:

d(b, Suite) =

⎧⎪⎨⎪⎩
0 if the branch is covered,
v(dmin(b, Suite)) if the predicate has been executed at least twice,
1 otherwise.

(2)
The cost function used to attain the distance value follows a standard formulation based
on the branch predicate [13]. Note that an expression must be executed at least twice,
because we must cover the true and false outcomes of each expression.
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In order to measure coverage of Bytecode-MCC and generate test cases intended to
satisfy the produced obligations, we can make use of the same branch distance calcu-
lation. To obtain the fitness of a test suite, we calculate the branch distances for each
expression (and desired outcome) involved in each obligation. Then, the fitness for an
individual obligation is the sum of fitness values of all expressions (and desired out-
comes) present in the obligation.

For each Boolean expression, we can calculate the minimal branch distance achieved
by that suite. For each obligation, we calculate the branch distance for each targeted ex-
pression and outcome, then score that obligation as the sum of the branch distances for
its targeted expression and outcome combinations. As execution comes closer to satis-
fying the obligation, the fitness should converge to zero. This fitness formulation can be
used as a test generation target, or to measure coverage of existing test suites.

4 Study
We hypothesize that the simplified nature of bytecode instructions limits the effec-
tiveness of tests by introducing the potential for masking, and that Bytecode-MCC-
satisfying tests will be effective at overcoming this masking effect. Specifically, we
wish to address the following research questions:

1. Does the Bytecode-MCC fitness function attain high coverage of the Bytecode-
MCC test obligations?

2. Are test suites generated targeting Bytecode-MCC more effective at detecting faults
than suites targeting Branch Coverage?

3. Does targeting the Bytecode-MCC and Branch Coverage fitness functions simulta-
neously yield higher levels of Bytecode-MCC coverage?

4. Does targeting the Bytecode-MCC and Branch Coverage fitness functions simulta-
neously yield higher levels of fault detection?

To address these questions, we have performed the following experiment:

1. Collected Case Examples: We have used 109 real faults, from five Java projects,
as test generation targets.

2. Generated Test Cases: For each fault, we generated 10 suites targeting Bytecode-
MCC, Branch Coverage, and a combination of both Bytecode-MCC and Branch
Coverage for each class-under-test (CUT) using EvoSuite. We perform this process
with both a two-minute and a ten-minute search budget per CUT.

3. Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or that
return inconsistent results, are automatically removed.

4. Assessed Effectiveness: For each fault and fitness target, we measure likelihood of
fault detection (proportion of suites that detect the fault to the number generated).

5. Measured Bytecode-MCC Coverage: For each generated suite, we measure the
attained Bytecode-MCC Coverage over the CUT.

Case Examples: Defects4J is a database of real faults extracted from Java projects
[10]. The version used in this research, 1.20, consists of 395 faults from six projects:
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Chart (26 faults), Closure (133 faults), Lang (65 faults), Math (106 faults), Time (27
faults), and Mockito (38 faults). As our focus is on complex Boolean expressions, we
selected examples where the source code contains either a large number of Boolean
expressions (at least 30), complex Boolean expressions (at least three conditions), or
both. Following this filtering, we selected a subset of 109 faults: Chart (1), Closure
(66), Lang (28), Math (11), and Time (4). For each fault, Defects4J provides access to
the faulty and fixed versions of the code, developer-written test cases that expose the
faults, and a list of classes and lines of code modified by the patch that fixes the fault.

Each fault is required to meet three properties. First, a pair of code versions must
exist that differ only by the minimum changes required to address the fault. The “fixed”
version must be explicitly labeled as a fix to an issue, and changes imposed by the
fix must be to source code, not to other project artifacts. Second, the fault must be
reproducible—at least one test must pass on the fixed version and fail on the faulty
version. Third, the fix must be isolated from unrelated code changes such as refactoring.

Test Suite Generation: We generate tests using EvoSuite targeting both Bytecode-
MCC and Branch Coverage1. EvoSuite can also simultaneously target multiple criteria,
with fitness evaluated as a single combined score. Therefore, we have also targeted a
combination of Bytecode-MCC and Branch Coverage to evaluate whether the combi-
nation can achieve higher Bytecode-MCC coverage or detect more faults.

Test suites are generated that target the classes reported as relevant to the fault by
Defects4J. Tests are generated using the fixed version of the CUT and applied to the
faulty version because EvoSuite generates its own assertions for use as oracles. In prac-
tice, this translates to a regression testing scenario, where tests are generated using a
version of the system understood to be “correct” in order to guard against future is-
sues [17]. Tests that fail on the faulty version, then, detect behavioral differences be-
tween the two versions2.

Two search budgets were used—two minutes and ten minutes per class. This al-
lows us to examine whether an increased search budget benefits coverage or fault de-
tection efficacy. These values are typical of other testing experiments [16]. To control
experiment cost, we deactivated assertion filtering—all possible regression assertions
are included. All other settings were kept at their default values. As results may vary,
we performed 10 trials for each fault, criterion, and search budget.

Generation tools may generate flaky (unstable) tests [17]. We automatically re-
moved non-compiling test suites and tests that return inconsistent results over five trials.
On average, less than one percent of the tests are removed from each suite.

5 Results and Discussion
The goal of our preliminary study is to determine whether search-based test generation
is able to satisfy the test obligations of Bytecode-MCC within a typical search budget.
We also wish to evaluate the fault-detection performance of the suites generated under
that budget, regardless of the attained level of coverage.

1 Specifically, the onlybranch fitness function, which omits branchless methods. This was
chosen as our implementation of Bytecode-MCC also omits branchless methods.

2 Note that this is identical practice to other studies using EvoSuite with Defects4J, i.e. [17,16]
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5.1 Attained Bytecode-MCC Coverage

Table 1 lists the average Bytecode-MCC Two-Minute Budget Ten-Minute Budget
System MCC MCC/BC MCC MCC/BC
Overall 23.31 40.47 25.53 43.36
Chart 8.70 35.20 15.40 39.70

Closure 13.52 20.81 16.33 23.97
Lang 31.97 66.07 32.55 68.89
Math 41.00 67.04 44.22 69.22
Time 69.58 92.88 70.68 93.33

Table 1: Average Bytecode-MCC
coverage (%) attained by test suites.

coverage attained given two-minute and ten-
minute search budgets when targeting Bytecode-
MCC alone and when targeting both Branch
and Bytecode-MCC. From Table 1, we can see
that the attained coverage is generally quite
low. Overall, only 23.31% of obligations are
covered on average under a two-minute bud-
get, and only 25.53% under the ten-minute bud-
get. On a per-system basis, the average ranges
from 8.70% (Chart) - 69.58% (Time) under the two-minute budget and 15.40% (Chart)
- 70.68% (Time) under the ten-minute budget.

We can compare this to the attained Branch System Two-Minute Budget Ten-Minute Budget
Overall 39.95 47.67
Chart 33.10 54.41

Closure 13.30 21.36
Lang 81.59 87.99
Math 73.00 77.36
Time 68.50 86.27

Table 2: Average Branch Coverage
(%) attained by test suites targeting
Branch Coverage.

Coverage when targeting Branch Coverage as
the optimization target, as detailed in Table 2.
While these suites fail to attain 100% coverage
of their targeted goal, these figures are much
higher. Given two minutes for generation, these
suites attain 71.39% more coverage of their
stated goal (Branch Coverage) on average than
suites targeting Bytecode-MCC (Table 1). Un-
der a ten-minute budget, this increases to 86.72%.

What this shows is that Bytecode-MCC is a more difficult criterion to satisfy than
Branch Coverage. Given the same period of time, we can naturally expect higher at-
tainment of Branch Coverage than Bytecode-MCC coverage. Therefore, “typical” gen-
eration time frames like two minutes may not be enough to attain reasonable levels of
Bytecode-MCC coverage. However, moving from two minutes to ten minutes offers
only a 9.52% average improvement in attained Bytecode-MCC coverage, compared to
an average improvement of 19.32% in Branch Coverage. The limited improvement sug-
gests that an increased budget alone may not be enough to overcome the difficulty of
satisfying Bytecode-MCC obligations.

This idea is further reinforced by examining the Bytecode-MCC coverage results
when Branch Coverage and Bytecode-MCC are targeted simultaneously, as listed in
Table 1 for each system and budget. Overall, targeting Branch and Bytecode-MCC cov-
erage simultaneously yields a 73.62% increase in attained Bytecode-MCC coverage
under a two-minute budget over targeting Bytecode-MCC on its own, and a 69.84%
improvement under a ten-minute budget. Targeting Branch Coverage in addition to
Bytecode-MCC offers easier-to-cover intermediate goals that, ultimately, result in im-
proved Bytecode-MCC coverage. Coverage is still lower than desired, but the situation
is improved over single-target optimization of Bytecode-MCC by introducing feedback
(using Branch Coverage) that the test generator can work with.
5.2 Fault Detection

Table 3 lists the average likelihood of fault detection for suite generated to target
Bytecode-MCC, Branch Coverage, and a combination of Bytecode-MCC and Branch
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Coverage, divided by system and overall, for each search budget. Overall, Branch-
targeting suites have a 21.20-22.13% likelihood of detection. This is consistent with
previous experiments using this set of faults, and reflects the complex nature of the
studied faults [16]. Overall, Bytecode-MCC-targeting tests only have a 4.27% average
likelihood of detection under a two-minute budget, and a 3.47% average likelihood of
detection under a ten-minute budget—far lower than when Branch Coverage is targeted.

This drop is likely due to the low Two-Minute Budget Ten-Minute Budget
System MCC Branch MCC/BC MCC Branch MCC/BC
Overall 4.27 21.20 16.67 3.47 22.13 19.33
Chart 20.00 100.00 90.00 1.00 100.00 90.00

Closure 0.00 1.33 1.00 0.00 3.67 2.33
Lang 8.28 41.72 28.28 7.24 43.79 32.41
Math 5.46 20.91 16.36 3.64 16.36 19.09
Time 0.00 2.50 32.50 0.00 0.00 35.00

Table 3: Average likelihood of fault detection
(%) for each generation target and budget,
broken down by system and overall.

coverage of Bytecode-MCC when it is
the sole optimization target. Results im-
prove when Bytecode-MCC and Branch
Coverage are targeted simultaneously.
Targeting both yields an overall aver-
age likelihood of detection of 16.67%
(two-minute budget) and 19.33% (ten-
minute budget). Still, this is lower than
when Branch Coverage is targeted alone.
Previous research indicates that multi-
objective optimization can be more difficult than single-objective optimization [16],
and it is likely that the additional burden of satisfying Bytecode-MCC results in lower
Branch Coverage as well when both are targeted.

However, if we examine results on a per-system basis, we can see that Bytecode-
MCC satisfaction may have some promise for improvement in fault-detection. For the
Time examples, targeting the combination of Branch Coverage and Bytecode-MCC
yields over 92% Bytecode-MCC coverage on average. The combination also has an
average likelihood of detection of 32.50-35.00%—well over the overall average. In this
case, targeting the combination makes it possible to detect faults completely missed
when targeting Branch Coverage alone.

On average, the Time examples contain more complex Boolean expressions than the
other systems, with an average of 3.25 conditions per decision (compared to an overall
average of 2.29). These are not trivial examples, and the performance when targeting the
combination of Branch Coverage and Bytecode-MCC is promising. If systems contain
complex Boolean expressions and high Bytecode-MCC coverage can be achieved, then
we may also see improvements in fault detection. However, it is also clear that we must
first find the means to improve attained Bytecode-MCC coverage.
5.3 Discussion

Even if Bytecode-MCC attainment is theoretically able to overcome issues with mask-
ing, we cannot test its abilities without first finding ways to improve coverage. The Time
examples were the only ones where Bytecode-MCC coverage was reasonably high—
particularly with the boost offered by simultaneously targeting Branch Coverage. While
those showed promising improvements in fault detection as well, such improvements
require increased ability to attain coverage.

Some criteria are inherently more difficult to satisfy than others [18]. It will be more
difficult—and will require more test cases—to satisfy MCC over Branch Coverage. It
may not be reasonable to expect equal coverage of Branch Coverage and Bytecode-
MCC given the same time budget. Still, there may be means of improving coverage.
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Reformulating the fitness function: A complicating factor in search-based test gener-
ation comes from the fitness function and its ability to offer feedback. When attempting
to achieve Branch Coverage, the branch distance is used instead because it offers clear
feedback, suggesting whether one solution is closer to covering the remaining obliga-
tions than another. It is possible that a fitness formulation other than the one employed
in this work would yield better results. In the proposed function, each Bytecode-MCC
obligation is a combination of smaller Boolean conditions. Fitness is measured by scor-
ing each condition independently and linearly combining the resulting scores. Progress
towards covering any of the individual conditions will yield a better fitness score. This,
in theory, should offer reasonable feedback. However, there may exist cases where the
independent subgoals conflict, and the choice of input may improve the coverage of one
condition while increasing the distance for another condition.

A linear combination of condition distances may not be an ideal mechanism for
judging fitness for Bytecode-MCC obligations, and other fitness formulations may yield
better results. For example, it may be better to weight conditions based on the order
they must be satisfied in. Alternatively, rather than combining the distances into a sin-
gle score, each obligation could be treated as a set of distance scores to be optimized
independently. This would be a more complex approach, but could potentially yield
better results in cases where goals conflict.

Use Bytecode-MCC to measure adequacy instead of a direct generation target:
Some criteria could yield powerful test cases, but lack sufficient feedback mechanisms
to drive a search towards high levels of coverage. For example, Exception Coverage
rewards test suites that throw many exceptions. However, there is no feedback mech-
anism that suggests “closeness” to throwing more exceptions [1]. This criterion yields
poor suites when targeted as the sole fitness function, but offers great utility as a means
of judging adequacy, and as a stopping criterion to determine when to finish testing.
Likewise, we could target other fitness functions, but use Bytecode-MCC to assess the
final test suites as a means to determine when to stop test generation.

Research has suggested that targeting unrelated fitness functions like Branch Cov-
erage, or combining additional fitness functions with uninformative ones—i.e., Branch
and Exception Coverage—results in higher Exception Coverage of the final suite [16].
Likewise, we could choose alternative optimization targets, then measure the attained
Bytecode-MCC of the resulting tests. If we can find fitness functions that yield higher
levels of Bytecode-MCC, we will be better able to evaluate the potential of the criterion
for overcoming masking and improving the fault-detection potential of test suites.

Recent work explored the use of reinforcement learning to improve attainment of
Exception Coverage [1]. The proposed approach was able to strategically adjust the tar-
geted fitness functions over time in service of improving Exception Coverage. A similar
adaptive fitness function selection approach could be used to discover combinations of
fitness functions that attain high coverage of Bytecode-MCC.

We may wish to also consider other forms of test generation, beyond search-based
generation. For example, (dynamic) symbolic execution techniques use sophisticated
solvers to attain input designed to drive program execution towards particular paths [2].
Such approaches suffer from limitations in terms of the type of programs and language
features they can handle, and in terms of scalability [5]. However, they can be very
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effective at producing the input needed to traverse specific paths—which is required
for Bytecode-MCC satisfaction. The use of symbolic execution—or approaches that
combine search and symbolic execution—may be required to achieve high levels of
Bytecode-MCC coverage.

6 Threats to Validity
Internal Validity: Because EvoSuite’s test generation process is non-deterministic, we
have generated ten test suites for each combination of fault, budget, and fitness function.
It is possible that larger sample sizes may yield different results. However, we believe
that this is a sufficient number to draw stable conclusions.

External Validity: Our study has focused on only five systems. We believe that such
systems are representative of, at minimum, other small to medium-sized open-source
Java systems. We believe that we have chosen enough examples to gain a basic under-
standing of Bytecode-MCC, and that our results are generalizable to sufficiently similar
projects. In this study, we have implemented Bytecode-MCC within EvoSuite. Results
may differ using a different test generation algorithm. However, we believe that Evo-
Suite is sufficiently powerful to explore our proposed ideas.

7 Related Work
Hayhurst et al. observed sensitivity to statement structure, stating that “if a complex
decision statement is decomposed into a set of less complex (but logically equivalent)
decision statements, providing MC/DC for the parts is not always equivalent to provid-
ing MC/DC for the whole” [11]. Gargantini et al. have also observed the sensitivity of
structural coverage metrics to modification of the code structure and proposed a method
of automatically measuring the resilience of a piece of code to modification [6]. Chilen-
ski further made the observation that “If the number of tests M is fixed at N + 1 (N being
the number of conditions), the probability of distinguishing between incorrect functions
grows exponentially with N, N > 3” [3]. This observation is based on the number of
tests, but notes that testing power grows with statement complexity.

In past work, we empirically demonstrated the effects of expression structure on
coverage and suite effectiveness, clearly illustrating the negative impact of statement
simplification on a series of industrial case examples [8]. Our results supported the
previous observations. We also proposed a set of “observability” extensions for source-
based coverage criteria to overcome masking between-expressions [14,18]. Our pro-
posed method, Bytecode-MCC acts in a similar—but more limited—manner to the
notion of “observability”, requiring that masking be overcome in closely-connected
statements. To date, ours is the first approach to address masking in search-based test
generation or when considering bytecode representations of programs.

8 Conclusions
Masking occurs when one condition prevents another from influencing the output of
a Boolean expression. Adequacy criteria such as Multiple Condition Coverage (MCC)
overcome masking within one expression, but offers no guarantees about subsequent
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expressions. As a result, a Boolean expression written as a single complex statement
will yield more effective test cases than when written as a series of simple expressions.
Many approaches to automated test case generation for Java operate not on the source
code, but on bytecode. The transformation to bytecode simplifies complex expressions
into multiple expressions, introducing masking. We propose Bytecode-MCC, a new
adequacy criterion designed to group bytecode expressions and reformulate them into
complex expressions. Bytecode-MCC should produce test obligations that are more
likely to reveal faults in program logic than tests covering the simplified bytecode.

A preliminary study conducted over 109 faults from Defects4J indicate the poten-
tial of the technique. Results attained for the “Time” system, where targeting the com-
bination of Bytecode-MCC and Branch Coverage yields high Bytecode-MCC cover-
age, show fault detection well above the overall average. However, there are multiple
research challenges to be overcome. Bytecode-MCC is more difficult to achieve than
Branch Coverage, and its fitness function does not offer sufficient feedback to guide test
generation. This suggests that Bytecode-MCC may be best used as a method of judg-
ing test suite quality, rather than as a direct generation target. Simultaneously targeting
Bytecode-MCC and Branch Coverage improves coverage of Bytecode-MCC and the
likelihood of fault detection. It may be possible to identify other fitness functions that
are effective at attaining Bytecode-MCC.

In future work, we will explore methods of improving Bytecode-MCC coverage.
In particular, we plan to: (1) Explore alternative formulations of the fitness function
for Bytecode-MCC, such as applying weights based on the order that sub-obligations
must be solved. (2) Examine the use of Bytecode-MCC as a way to judge test suites
generated targeting other criteria, as well as its use as a stopping condition for test
generation. (3) Investigate the use of reinforcement learning to automatically identify
alternative generation targets that will yield higher attainment of Bytecode-MCC than
direct targeting of Bytecode-MCC during test generation. (4) Vary the algorithms used
to generate Bytecode-MCC-covering test suites.
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