2,200 research outputs found
Three-Dimensional Analysis of Wakefields Generated by Flat Electron Beams in Planar Dielectric-Loaded Structures
An electron bunch passing through dielectric-lined waveguide generates
erenkov radiation that can result in high-peak axial electric field
suitable for acceleration of a subsequent bunch. Axial field beyond
Gigavolt-per-meter are attainable in structures with sub-mm sizes depending on
the achievement of suitable electron bunch parameters. A promising
configuration consists of using planar dielectric structure driven by flat
electron bunches. In this paper we present a three-dimensional analysis of
wakefields produced by flat beams in planar dielectric structures thereby
extending the work of Reference [A. Tremaine, J. Rosenzweig, and P. Schoessow,
Phys. Rev. E 56, No. 6, 7204 (1997)] on the topic. We especially provide
closed-form expressions for the normal frequencies and field amplitudes of the
excited modes and benchmark these analytical results with finite-difference
time-domain particle-in-cell numerical simulations. Finally, we implement a
semi-analytical algorithm into a popular particle tracking program thereby
enabling start-to-end high-fidelity modeling of linear accelerators based on
dielectric-lined planar waveguides.Comment: 12 pages, 2 tables, 10 figure
First result with AMBER+FINITO on the VLTI: The high-precision angular diameter of V3879 Sgr
Our goal is to demonstrate the potential of the interferometric AMBER
instrument linked with the Very Large Telescope Interferometer (VLTI)
fringe-tracking facility FINITO to derive high-precision stellar diameters. We
use commissioning data obtained on the bright single star V3879 Sgr. Locking
the interferometric fringes with FINITO allows us to record very low contrast
fringes on the AMBER camera. By fitting the amplitude of these fringes, we
measure the diameter of the target in three directions simultaneously with an
accuracy of 25 micro-arcseconds. We showed that V3879 Sgr has a round
photosphere down to a sub-percent level. We quickly reached this level of
accuracy because the technique used is independent from absolute calibration
(at least for baselines that fully span the visibility null). We briefly
discuss the potential biases found at this level of precision. The proposed
AMBER+FINITO instrumental setup opens several perspectives for the VLTI in the
field of stellar astrophysics, like measuring with high accuracy the oblateness
of fast rotating stars or detecting atmospheric starspots
An implementation of the flexible spin-lock model in ERIKA Enterprise on a multi-core platform
Recently, the flexible spin-lock model (FSLM) has been introduced, unifying spin-based and suspension-based resource sharing protocols for real-time multiprocessor platforms by explicitly identifying the spin-lock priority as a parameter.Earlier work focused on the definition of a protocol for FSLM and its corresponding analysis under the assumption that various types of implementation overhead could be ignored.In this paper, we briefly describe an implementation of the FSLM for a selected range of spin-lock priorities in the ERIKA Enterprise RTOS as instantiated on an Altera Nios II platform using 4 soft-core processors. Moreover, we present measurement results for the protocol specific overhead of FSLM as well as thenatively provided multiprocessor stack resource policy (MSRP).Given these results, we are now in a position to judge when it is advantageous to use either MSRP or FMLP for our system set-up for given global resource access times of tasks
An implementation of the flexible spin-lock model in ERIKA Enterprise on a multi-core platform
Recently, the flexible spin-lock model (FSLM) has been introduced, unifying spin-based and suspension-based resource sharing protocols for real-time multiprocessor platforms by explicitly identifying the spin-lock priority as a parameter.Earlier work focused on the definition of a protocol for FSLM and its corresponding analysis under the assumption that various types of implementation overhead could be ignored.In this paper, we briefly describe an implementation of the FSLM for a selected range of spin-lock priorities in the ERIKA Enterprise RTOS as instantiated on an Altera Nios II platform using 4 soft-core processors. Moreover, we present measurement results for the protocol specific overhead of FSLM as well as thenatively provided multiprocessor stack resource policy (MSRP).Given these results, we are now in a position to judge when it is advantageous to use either MSRP or FMLP for our system set-up for given global resource access times of tasks
Whither Capitalism? Financial externalities and crisis
As with global warming, so with financial crises â externalities have a lot to answer for. We
look at three of them. First the financial accelerator due to âfire salesâ of collateral assets -- a
form of pecuniary externality that leads to liquidity being undervalued. Second the ârisk-
shiftingâ behaviour of highly-levered financial institutions who keep the upside of risky
investment while passing the downside to others thanks to limited liability. Finally, the
network externality where the structure of the financial industry helps propagate shocks
around the system unless this is checked by some form of circuit breaker, or âring-fenceâ.
The contrast between crisis-induced Great Recession and its aftermath of slow growth in the
West and the rapid - and (so far) sustained - growth in the East suggests that successful
economic progress may depend on how well these externalities are managed
Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures
We report observation of a strong wakefield induced energy modulation in an
energy-chirped electron bunch passing through a dielectric-lined waveguide.
This modulation can be effectively converted into a spatial modulation forming
micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of
driving coherent THz radiation. The experimental results agree well with
theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR
Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can
efficiently incorporate optically active photoluminescent centers such as the
nitrogen-vacancy complex, thus making them promising candidates as optical
biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without
photobleaching combined with high uptake rate and low cytotoxicity. Focusing on
FNDs interference with neuronal function, here we examined their effect on
cultured hippocampal neurons, monitoring the whole network development as well
as the electrophysiological properties of single neurons. We observed that FNDs
drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and
excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and
consistently reduced action potential (AP) firing frequency (by 36%), as
measured by microelectrode arrays. On the contrary, bursts synchronization was
preserved, as well as the amplitude of spontaneous inhibitory and excitatory
events. Current-clamp recordings revealed that the ratio of neurons responding
with AP trains of high-frequency (fast-spiking) versus neurons responding with
trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs
exerted a comparable action on neuronal subpopulations. At the single cell
level, rapid onset of the somatic AP ("kink") was drastically reduced in
FND-treated neurons, suggesting a reduced contribution of axonal and dendritic
components while preserving neuronal excitability.Comment: 34 pages, 9 figure
Calibration of a two-phase xenon time projection chamber with a Ar source
We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and
at 2.8 keV in both the light and charge channels using a Ar source that
is directly released into the detector. We map the light and charge yields as a
function of electric drift field. For the 2.8 keV peak, we calculate the
Thomas-Imel box parameter for recombination and determine its dependence on
drift field. For the same peak, we achieve an energy resolution,
, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric
drift fields.Comment: 12 pages, 7 figure
- âŠ