35,139 research outputs found

    Population connectivity shifts at high frequency within an open-coast marine protected area network.

    Get PDF
    A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50-84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions

    Zero gravity tissue-culture laboratory

    Get PDF
    Hardware was developed for performing experiments to detect the effects that zero gravity may have on living human cells. The hardware is composed of a timelapse camera that photographs the activity of cell specimens and an experiment module in which a variety of living-cell experiments can be performed using interchangeable modules. The experiment is scheduled for the first manned Skylab mission

    Adaptive laser link reconfiguration using constraint propagation

    Get PDF
    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications networks. Conclusions are presented, including a graphical analysis of results depicting the ordered set of links versus the set of all possible links based on the computed Bit Error Rate (BER). Finally, future research is discussed which includes enhancements to the HALO algorithm, network simulation, and the addition of an intelligent routing algorithm for BP

    Bullying in Children and Teenagers Who Stutter and the Relation to Self-Esteem, Social Acceptance and Anxiety

    Get PDF
    This study examined the relationship of bullying to self-esteem and anxiety in children and teenagers who stutter. Bullying in 59 children and teenagers who stutter was assessed using a newly-developed questionnaire, the Bullying Assessment. Additionally, the participants completed the Harter Self-Perception questionnaire, and an adapted version of the State-Trait-Anxiety Inventory. A significant correlation was found between bullying and the peer-related self-perception and state anxiety in a shop. The analysis was then repeated for two different age groups (children and teenagers) to assess whether or not there were differences over ages. For children, a relation between bullying and self-esteem was found, whereas for teenagers there was a relation between bullying and state anxiety. Clinical implications discuss strategies how to deal with bullying and highlight the importance of in-vivo-training and working on self-confidence

    High-precision radiocarbon dating of the construction phase of Oakbank Crannog, Loch Tay, Perthshire

    Get PDF
    Many of the Loch Tay crannogs were built in the Early Iron Age and so calibration of the radiocarbon ages produces very broad calendar age ranges due to the well-documented Hallstatt plateau in the calibration curve. However, the large oak timbers that were used in the construction of some of the crannogs potentially provide a means of improving the precision of the dating through subdividing them into decadal or subdecadal increments, dating them to high precision and wiggle-matching the resulting data to the master <sup>14</sup>C calibration curve. We obtained a sample from 1 oak timber from Oakbank Crannog comprising 70 rings (Sample OB06 WMS 1, T103) including sapwood that was complete to the bark edge. The timber is situated on the northeast edge of the main living area of the crannog and as a large and strong oak pile would have been a useful support in more than 1 phase of occupation and may be related to the earliest construction phase of the site. This was sectioned into 5-yr increments and dated to a precision of approximately ±8–16 <sup>14</sup>C yr (1 σ). The wiggle-match predicts that the last ring dated was formed around 500 BC (maximum range of 520–465 BC) and should be taken as indicative of the likely time of construction of Oakbank Crannog. This is a considerable improvement on the estimates based on single <sup>14</sup>C ages made on oak samples, which typically encompassed the period from around 800–400 BC

    Testing a Simplified Version of Einstein's Equations for Numerical Relativity

    Get PDF
    Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson has proposed a simpler but approximate scheme for systems near equilibrium, like binary neutron stars. We test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial that the approximation work well if we are to believe its predictions for more complicated systems like binaries. Our results are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107

    Comparing initial-data sets for binary black holes

    Get PDF
    We compare the results of constructing binary black hole initial data with three different decompositions of the constraint equations of general relativity. For each decomposition we compute the initial data using a superposition of two Kerr-Schild black holes to fix the freely specifiable data. We find that these initial-data sets differ significantly, with the ADM energy varying by as much as 5% of the total mass. We find that all initial-data sets currently used for evolutions might contain unphysical gravitational radiation of the order of several percent of the total mass. This is comparable to the amount of gravitational-wave energy observed during the evolved collision. More astrophysically realistic initial data will require more careful choices of the freely specifiable data and boundary conditions for both the metric and extrinsic curvature. However, we find that the choice of extrinsic curvature affects the resulting data sets more strongly than the choice of conformal metric.Comment: 18 pages, 12 figures, accepted for publication in Phys. Rev.

    Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    Get PDF
    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out

    Solving the Initial Value Problem of two Black Holes

    Get PDF
    We solve the elliptic equations associated with the Hamiltonian and momentum constraints, corresponding to a system composed of two black holes with arbitrary linear and angular momentum. These new solutions are based on a Kerr-Schild spacetime slicing which provides more physically realistic solutions than the initial data based on conformally flat metric/maximal slicing methods. The singularity/inner boundary problems are circumvented by a new technique that allows the use of an elliptic solver on a Cartesian grid where no points are excised, simplifying enormously the numerical problem.Comment: 4 pages, 3 figures. Minor corrections, some points clarified, and one reference added. To appear in Phys. Rev. Let
    • …
    corecore