310 research outputs found

    Fouling effect in a shell-and-tube heat exchanger with twisted tape inserts applied to a small-scale biomass gasification power plant

    Get PDF
    In this work the over-time behaviour of a shell-and-tube type heat exchanger applied to a commercial and small-scale wood biomass gasification system was investigated. The heat exchanger, equipped with twisted tape turbulators, was used to cool down the syngas produced by the power plant. An experimental campaign was conducted to evaluate the performance trend in the first 15 hours of operation. The results showed an increase in heat transfer which led to a progressive reduction of the gas outlet temperature from 105.4 °C to 90.0 °C. The data collected confirm the literature studies on the positive effect that the deposits of particulate matter and tars have in reducing the clearance between the heat exchanger pipes and the turbulators, providing information for the temporal optimization of the cleaning strategy of the heat exchanger itself

    Biochar-Aided Heat Transfer in Ground Source Heat Pumps: Effects on Water Capillary Rise and Carbon Storage Capability

    Get PDF
    Ground source heat pump systems rely on soil conductivity for optimal performance, and soil conductivity is primarily influenced by soil moisture content. In this study, we investigate how biochar, a porous material derived from biomass gasification and pyrolysis, influences capillary water rise and moisture retention in soil. Mixtures of biochar with soil and sand in varying ratios, along with control mixtures, were prepared and tested on lab-scale equipment. The results showed that biochar-amended samples exhibited a significantly higher capillary water rise. At a height of 0.25 m above the water level, the minimum moisture content in the biochar-treated samples was 43.5%, much higher than the 6.5% recorded in the control group, which consisted of soil or soil and sand only. Even in the long term, mixtures with biochar maintained high moisture content, ranging from 36% to 57%, compared to the control's 8%, at heights near 0.5 m over the free surface of the water. Moreover, the utilization of biochar as a soil improver in geothermal application is an innovative way for carbon sequestration which, in the analyzed conditions, leads to the storage of up to 0.7 tons of CO2eq per square meter of geothermal field

    Experimental investigation of chestnut shells gasification

    Get PDF
    Fossil fuels substitution with renewable energy sources is necessary for an effective decarbonization. Biomass can represent a valid alternative to fossil fuels, reducing greenhouse gas emissions. Furthermore, bioenergy generation avoids costs and problems related to biomass disposal. This study presents the energetic valorisation of chestnut shells, a byproduct of the chestnut transformation processes. Through a thermo-conversion system based on gasification, this material was considered not as a waste, but as a resource to be exploited to produce bioenergy and biochar. The fuel gas produced through the gasification process can partially replace the LPG currently used to meet the energy required for the brulage and steam peeling processes. Experimental gasification tests were carried out to evaluate this biomass by means of a laboratory scale micro-gasifier (Imbert downdraft type). Chestnut shells were pelletized with a pelletizer machine to avoid the bridging effect inside the gasifier and increase its energy density. The fuel gas obtained was sampled and analyzed to measure its composition and HHV. In addition, the gasification efficiency was calculated obtaining a value of 70%, a result in line with the ones obtained with higher quality biomasses

    Experimental investigation of moisture influence on biochar and biochar-soil blends thermophysical properties

    Get PDF
    Biochar is a carbonaceous and porous material obtained through pyrolysis or gasification. It can be extremely valuable as soil amendment since it increases the organic matter content and fertility, the microbial activity, the water retention, and the crop yields. Moreover, biochar soil application has the potential for long-term carbon sequestration which makes its application to soil interesting even outside agricultural crops. In recent years, the study of the variation of the thermophysical properties of the soil induced by mixing with biochar has attracted interest. In this work, the effect of the water content on thermal conductivity of biochar was investigated by means of the guarded hot plate apparatus λ-Meter EP500e. The same procedure was applied to various mixtures of biochar and soil. Furthermore, the specific heat was measured in order to obtain the thermal diffusivity in the various conditions through a calorimeter. Solar reflectance was also measured following the ASTM C1549 using a solar spectrum reflectometer SSR-ER. The obtained thermophysical properties can be used for the evaluation of the temperature trend of soil at different depths during the seasonal variations

    Airborne pathogens diffusion: A comparison between tracer gas and pigmented aerosols for indoor environment analysis

    Get PDF
    The evaluation of airborne pathogens diffusion is a crucial practice in preventing airborne diseases like COVID-19, especially in indoor environments. Through this transmission route, pathogens can be carried by droplets, droplet nuclei and aerosols and be conveyed over long distances. Therefore, understanding their diffusion is vital for prevention and curbing disease transmission. There are different techniques used for this purpose, and one of the most common is the utilization of tracer gas, however, it has limitations such as the difference in size between the gas molecules and the respiratory droplets, as well as its incapability to take into account evaporation. For this reason, a new method for evaluating the diffusion of respiratory droplets has been developed. This approach involves the use of an ultrasonic emitter to release and disperse pigmented aerosols, and a colorimeter for the following quantitative evaluation. A comparison with the tracer gas technique has been carried out, showing for the pigmented aerosols methodology a response that is dependent on different relative humidity conditions, while there is no clear difference in the dispersion of tracer gas at high or low humidity

    Biochar powders coating to improve evaporative cooling in Maisotsenko-cycle systems

    Get PDF
    This work presents an experimental study on the performance of biochar powder coatings on aluminum surfaces for use in indirect evaporative coolers based on the Maisotsenko cycle. The performance of the biochar coated samples was compared to cellulose-coated aluminum samples and uncoated ones. Results showed that biochar coatings improved the performance of uncoated aluminum, with the 150 μm particle size coating offering performance comparable to cellulose. However, wetting times were longer, which has implications for spraying strategies

    Influence of Alloying Elements and Solution Heat Treatment on Microstructure and Microhardness of the Ni-Nb-M System (M = Al, Ti, Cr, Fe)

    Get PDF
    Ni-based superalloys are widely used in critical components of aircraft engines and turbines and also in the petrochemical industry, for applications in highly corrosive environments. These alloys have as main characteristics their superior mechanical, corrosion and oxidation resistance at high temperatures, as well as creep resistance. The chemical composition associated with carrying out heat treatments directly influences the phases formed (such as the ordered cubic phase γ’-Ni3(Al,Ti) in the fcc γ-Ni matrix), and depending on the alloying elements and fraction, there is the possibility of an increase in mechanical strength. There is a certain gap in the literature regarding the study of ternary superalloys based on Ni-Nb, and the influence of the third alloying element on the microstructure and microhardness. In this context, the objective of the study is to characterize pseudo-eutectic alloys of the Ni-15Nb-xM and Ni-20Nb-xM systems (xM = 2Al, 4Ti, 15Fe and 15Cr, wt.%) and investigate the influence of alloy elements and solution heat treating on their microstructure and properties through X-Ray Diffraction, Optical Microscopy, Scanning Electron Microscopy and Vickers Microhardness. Microhardness and microstructures were significantly influenced by the addition of alloying elements. The addition of Cr had a significant effect on the hardness of the cast samples. All alloys showed microhardness and microstructural changes after solution heat treatment

    Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib.

    Get PDF
    The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies
    corecore