2,563 research outputs found

    Holonomy and submanifold geometry

    Get PDF
    We survey applications of holonomic methods to the study of submanifold geometry, showing the consequences of some sort of extrinsic version of de Rham decomposition and Berger's Theorem, the so-called Normal Holonomy Theorem. At the same time, from geometric methods in submanifold theory we sketch very strong applications to the holonomy of Lorentzian manifolds. Moreover we give a conceptual modern proof of a result of Kostant for homogeneous space

    Amplifying single impurities immersed in a gas of ultra cold atoms

    Full text link
    We present a method for amplifying a single or scattered impurities immersed in a background gas of ultra cold atoms so that they can be optically imaged and spatially resolved. Our approach relies on a Raman transfer between two stable atomic hyperfine states that is conditioned on the presence of an impurity atom. The amplification is based on the strong interaction among atoms excited to Rydberg states. We perform a detailed analytical study of the performance of the proposed scheme with particular emphasis on the influence of many-body effects.Comment: 5 pages, 4 figure

    Fermionic collective excitations in a lattice gas of Rydberg atoms

    Full text link
    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van-der-Waals interaction among the Rydberg sates, these many-body states are collective fermionic excitations. The first excited state is a spin-wave that extends over the entire lattice. We demonstrate that our system permits to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices
    • …
    corecore