78 research outputs found

    A model of semimetallic behavior in strongly correlated electron systems

    Full text link
    Metals with values of the resistivity and the Hall coefficient much larger than typical ones, e.g., of sodium, are called semimetals. We suggest a model for semimetals which takes into account the strong Coulomb repulsion of the charge carriers, especially important in transition-metal and rare-earth compounds. For that purpose we extend the Hubbard model by coupling one additional orbital per site via hybridization to the Hubbard orbitals. We calculate the spectral function, resistivity and Hall coefficient of the model using dynamical mean-field theory. Starting from the Mott-insulating state, we find a transition to a metal with increasing hybridization strength (``self-doping''). In the metallic regime near the transition line to the insulator the model shows semimetallic behavior. We compare the calculated temperature dependence of the resistivity and the Hall coefficient with the one found experimentally for Yb4As3\rm Yb_4As_3. The comparison demonstrates that the anomalies in the transport properties of Yb4As3\rm Yb_4As_3 possibly can be assigned to Coulomb interaction effects of the charge carriers not captured by standard band structure calculations.Comment: 9 pages RevTeX with 7 ps figures, accepted by PR

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    ATP synthase: from single molecule to human bioenergetics

    Get PDF
    ATP synthase (FoF1) consists of an ATP-driven motor (F1) and a H+-driven motor (Fo), which rotate in opposite directions. FoF1 reconstituted into a lipid membrane is capable of ATP synthesis driven by H+ flux. As the basic structures of F1 (α3β3γδε) and Fo (ab2c10) are ubiquitous, stable thermophilic FoF1 (TFoF1) has been used to elucidate molecular mechanisms, while human F1Fo (HF1Fo) has been used to study biomedical significance. Among F1s, only thermophilic F1 (TF1) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TFoF1, HFoF1 is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HFoF1 were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HFoF1 is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity

    Engineering Spatial Analysis in Real Estate Applications

    No full text
    This paper considers the urban processes that real estate (RE) experts use in assessing the value of a certain property, based on characteristics of that property and its environment. The main objective is to illustrate the confluence of RE decisional processes and spatial analysis and to show how these techniques can be put to work together. This paper describes a software package specifically designed for supporting spatial analysis of urban data collections. This software can serve as a reference architecture for developing applications that support decisional processes in real estate. Based on geographical features, the computational environment supports appraisal of a wide range of real estate types and can also create analytical maps for use in developing plans and strategies. A case study demonstrates how the computational environment can improve the quality of the diagnosis of urban real estate in a region that has been selected for a prototype implementation
    corecore