1,556 research outputs found

    Noise-induced dynamics in bistable systems with delay

    Full text link
    Noise-induced dynamics of a prototypical bistable system with delayed feedback is studied theoretically and numerically. For small noise and magnitude of the feedback, the problem is reduced to the analysis of the two-state model with transition rates depending on the earlier state of the system. In this two-state approximation, we found analytical formulae for the autocorrelation function, the power spectrum, and the linear response to a periodic perturbation. They show very good agreement with direct numerical simulations of the original Langevin equation. The power spectrum has a pronounced peak at the frequency corresponding to the inverse delay time, whose amplitude has a maximum at a certain noise level, thus demonstrating coherence resonance. The linear response to the external periodic force also has maxima at the frequencies corresponding to the inverse delay time and its harmonics.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    Full text link
    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.Comment: 26 pages, 10 figures, accepted for publication in Ap

    Spin nematic interaction in multiferroic compound Ba2_{2}CoGe2_{2}O7_{7}

    Full text link
    We demonstrate the existence of the spin nematic interactions in an easy-plane type antiferromagnet Ba2_{2}CoGe2_{2}O7_{7} by exploring the magnetic anisotropy and spin dynamics. Combination of neutron scattering and magnetic susceptibility measurements reveals that the origin of the in-plane anisotropy is an antiferro-type interaction of the spin nematic operator. The relation between the nematic operator and the electric polarization in the ligand symmetry of this compound is presented. The introduction of the spin nematic interaction is useful to understand the physics of spin and electric dipole in multiferroic compounds.Comment: 5 pages, 4 figure

    Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5

    Full text link
    Elastic neutron diffraction measurements were performed on the quasi-two dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate antiferromagnet for low x to an unconventional superconductor on the Co-rich end of the phase diagram. We found that the superconductivity competes with the incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2, delta) with delta=0.298, while it coexists with the commensurate AFM order with qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system, where both the commensurate and incommensurate magnetic orders coexist with the superconductivity. These results reveal that particular areas on the Fermi surface nested by qI play an active role in forming the superconducting state in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc
    • …
    corecore