17 research outputs found

    A simple, safe and sensitive method for SARS-CoV-2 inactivation and RNA extraction for RT-qPCR

    No full text
    The SARS‐CoV‐2 pandemic has created an urgent need for diagnostic tests to detect viral RNA. Commercial RNA extraction kits are often expensive, in limited supply, and do not always fully inactivate the virus. Together, this calls for the development of safer methods for SARS‐CoV‐2 extraction that utilize readily available reagents and equipment present in most standard laboratories. We optimized and simplified a RNA extraction method combining a high molar acidic guanidinium isothiocyanate (GITC) solution, phenol and chloroform. First, we determined the GITC/RNA dilution thresholds compatible with an efficient two‐step RT‐qPCR for B2M mRNA in nasopharyngeal (NP) or oropharyngeal (OP) swab samples. Second, we optimized a one‐step RT‐qPCR against SARS‐CoV‐2 using NP and OP samples. We furthermore tested a SARS‐CoV‐2 dilution series to determine the detection threshold. The method enables downstream detection of SARS‐CoV‐2 by RT‐qPCR with high sensitivity (~4 viral RNA copies per RT‐qPCR). The protocol is simple, safe, and expands analysis capacity as the inactivated samples can be used in RT‐qPCR detection tests at laboratories not otherwise classified for viral work. The method takes about 30 min from swab to PCR‐ready viral RNA and circumvents the need for commercial RNA purification kits

    Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes

    No full text
    Mitochondrial tRNAs are transcribed as long polycistronic transcripts of precursor tRNAs and undergo posttranscriptional modifications such as endonucleolytic processing and methylation required for their correct structure and function. Among them, 5′-end processing and purine 9 N1-methylation of mitochondrial tRNA are catalyzed by two proteinaceous complexes with overlapping subunit composition. The Mg2+-dependent RNase P complex for 5′-end cleavage comprises the methyltransferase domain–containing protein tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C/MRPP1), short-chain oxidoreductase hydroxysteroid 17β-dehydrogenase 10 (HSD17B10/MRPP2), and metallonuclease KIAA0391/MRPP3. An MRPP1–MRPP2 subcomplex also catalyzes the formation of 1-methyladenosine/1-methylguanosine at position 9 using S-adenosyl-L-methionine as methyl donor. However, a lack of structural information has precluded insights into how these complexes methylate and process mitochondrial tRNA. Here, we used a combination of X-ray crystallography, interaction and activity assays, and small angle X-ray scattering (SAXS) to gain structural insight into the two tRNA modification complexes and their components. The MRPP1 N terminus is involved in tRNA binding and monomer–monomer self-interaction, whereas the C-terminal SPOUT fold contains key residues for S-adenosyl-L-methionine binding and N1-methylation. The entirety of MRPP1 interacts with MRPP2 to form the N1-methylation complex, whereas the MRPP1–MRPP2–MRPP3 RNase P complex only assembles in the presence of precursor tRNA. This study proposes low-resolution models of the MRPP1–MRPP2 and MRPP1–MRPP2–MRPP3 complexes that suggest the overall architecture, stoichiometry, and orientation of subunits and tRNA substrates

    Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein

    No full text
    MRPP2 (also known as HSD10/SDR5C1) is a multifunctional protein that harbours both catalytic and non-catalytic functions. The protein belongs to the short-chain dehydrogenase/reductases (SDR) family and is involved in the catabolism of isoleucine in vivo and steroid metabolism in vitro. MRPP2 also moonlights in a complex with the MRPP1 (also known as TRMT10C) protein for N1-methylation of purines at position 9 of mitochondrial tRNA, and in a complex with MRPP1 and MRPP3 (also known as PRORP) proteins for 5'-end processing of mitochondrial precursor tRNA. Inherited mutations in the HSD17B10 gene encoding MRPP2 protein lead to a childhood disorder characterised by progressive neurodegeneration, cardiomyopathy or both. Here we report two patients with novel missense mutations in the HSD17B10 gene (c.34G>C and c.526G>A), resulting in the p.V12L and p.V176M substitutions. Val12 and Val176 are highly conserved residues located at different regions of the MRPP2 structure. Recombinant mutant proteins were expressed and characterised biochemically to investigate their effects towards the functions of MRPP2 and associated complexes in vitro. Both mutant proteins showed significant reduction in the dehydrogenase, methyltransferase and tRNA processing activities compared to wildtype, associated with reduced stability for protein with p.V12L, whereas the protein carrying p.V176M showed impaired kinetics and complex formation. This study therefore identified two distinctive molecular mechanisms to explain the biochemical defects for the novel missense patient mutations

    Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism

    No full text
    T helper (Th) cells are CD4+ effector T cells that play an instrumental role in immunity by shaping the inflammatory cytokine environment in a variety of physiological and pathological situations. Using a combined chemico-genetic approach we identify histone H3K27 demethylases KDM6A and KDM6B as central regulators of human Th subsets. The prototypic KDM6 inhibitor GSK-J4 increases genome-wide levels of the repressive H3K27me3 chromatin mark and leads to suppression of the key transcription factor RORÎłt during Th17 differentiation, whereas in mature Th17 cells an altered transcriptional program leads to a profound metabolic reprogramming with concomitant suppression of IL-17 cytokine levels and reduced proliferation. Single cell analysis reveals a specific shift from highly inflammatory cell subsets towards a resting state upon demethylase inhibition. The root cause of the observed anti-inflammatory phenotype in stimulated Th17 cells is reduced expression of key metabolic transcription factors, such as PPRC1 and c-myc. Overall, this leads to reduced mitochondrial biogenesis resulting in a metabolic switch with concomitant anti-inflammatory effects. These data are consistent with an opposing effect of GSK-J4 on Th17 T-cell differentiation pathways directly related to proliferation and effector cytokine profiles

    Inhibition of histone H3K27 demethylase selectively modulates inflammatory phenotypes of natural killer cells

    Get PDF
    Natural killer (NK) cells are innate lymphocytes, important in immune surveillance and elimination of stressed, transformed, or virus-infected cells. They critically shape the inflammatory cytokine environment to orchestrate interactions of cells of the innate and adaptive immune systems. Some studies have reported that NK cell activation and cytokine secretion are controlled epigenetically, but have yielded only limited insight into the mechanisms. Using chemical screening with small-molecule inhibitors of chromatin methylation and acetylation, further validated by knockdown approaches, we here identified Jumonji-type histone H3K27 demethylases as key regulators of cytokine production in human NK cell subsets. The prototypic Jumonji domain–containing protein 3 (JMJD3/UTX) H3K27 demethylase inhibitor GSK-J4 increased global levels of the repressive H3K27me3 mark around transcription start sites of effector cytokine genes. Moreover, GSK-J4 reduced IFN-γ, TNFα, granulocyte–macrophage colony-stimulating factor (GM-CSF), and IL- 10 levels in cytokine-stimulated NK cells, while sparing their cytotoxic killing activity against cancer cells. The anti-inflammatory effect of GSK-J4 in NK cell subsets, isolated from peripheral blood or tissue from individuals with rheumatoid arthritis (RA), coupled with an inhibitory effect on formation of bone-resorbing osteoclasts, suggested that histone demethylase inhibition has broad utility for modulating immune and inflammatory responses. Overall, our results indicate that H3K27me3 is a dynamic and important epigenetic modification during NK cell activation and that JMJD3/UTX-driven H3K27 demethylation is critical for NK cell function

    A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

    No full text
    A longstanding belief, generated from the use of transfection reagents to internalize oligonucleotides (ASOs) in cells, is that ASOs exclusively trigger mRNA degradation in the nucleus. In contrast, we have identified a novel cytoplasmic mechanism through which ASOs silence their targets when delivered gymnotically (i.e., in the absence of any transfection reagent). Our data support the existence of a productive, PKC--dependent endocytotic pathway which leads to the interaction of the ASO with the Ago-2 PAZ domain followed by localization of the ASO-Ago2 complex into GW-182 mRNA degradation cytoplasmic bodies (GW-bodies). The degradation products of the targeted mRNA are not generated by Ago-2-directed cleavage and do not seem to exhibit a typical RNase H endonucleolytic cleavage pattern, indicating that other nucleases may be involved. Blocking the evolution of late endosomes into multi-vesicular bodies reduces ASO access to Ago-2 and results in potent reduction of ASO silencing ability. The identification of a cytoplasmic pathway occurring after gymnotic ASO delivery complements the previously known nuclear localization of ASO activity after transfection
    corecore