13 research outputs found

    Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice

    Get PDF
    Soluble fms-like tyrosine kinase receptor (sFlt-1) is a soluble form of extramembrane part of vascular endothelial growth factor receptor-1 (VEGFR-1) that has antitumor effects. Bifidobacterium Infantis is a kind of non-pathogenic and anaerobic bacteria that may have specific targeting property of hypoxic environment inside of solid tumors. The aim of this study was to construct Bifidobacterium Infantis-mediated sFlt-1 gene transferring system and investigate its antitumor effect on Lewis lung cancer (LLC) in mice. Our results demonstrated that the Bifidobacterium Infantis-mediated sFlt-1 gene transferring system was constructed successfully and the system could express sFlt-1 at the levels of gene and protein. This system could not only significantly inhibit growth of human umbilical vein endothelial cells induced by VEGF in vitro, but also inhibit the tumor growth and prolong survival time of LLC C57BL/6 mice safely. These data suggest that Bifidobacterium Infantis-mediated sFlt-1 gene transferring system presents a promising therapeutic approach for the treatment of cancer

    Omega-3 supplementation from pregnancy to postpartum to prevent depressive symptoms: a randomized placebo-controlled trial

    Get PDF
    Background: Low n-3 polyunsaturated fatty acids (PUFAs) has been linked to depression, but the preventive effect of n-3PUFAs supplementation on maternal depression needs further investigation. We aimed to evaluate the efficacy of a daily dose of n-3 PUFAs supplementation (fish oil) on the prevention of postpartum depression (PPD). Methods: A randomized, placebo-controlled, double blind trial was designed and nested into a cohort study conducted in Rio de Janeiro, Brazil. Sixty pregnant women identified as being at risk for PPD were invited and randomly assigned to receive fish oil capsules [1.8 g (1.08 g of Eicosapentaenoic (EPA) and 0.72 g of Docosapentaenoic (DHA) acids)] or placebo (control). The Edinburgh Postnatal Depression Scale (EPDS) was scored at 5–13 (T0, baseline), 22–24 (T1), 30–32 weeks of gestation (T2) and 4–6 weeks’ postpartum (T3). Supplementation started at week 22–24 of gestation (T1) and lasted for 16 weeks. Serum fatty acids were assayed to evaluate compliance. Prevalence of EPDS ≥11 was the primary outcome, and mean and changes in EPDS score, length of gestation, and birth weight the secondary outcomes. Linear mixed-effect (LME) and random-intercept logistic regression models were performed to test the effect of fish oil supplementation on prevalence of EPDS ≥11 and EPDS scores variation. Results: In intention-to-treat (ITT) analysis, at 30–32 weeks’ gestation women in the fish oil presented higher serum concentration of EPA, DHA and lower n-6/n-3 ratio comparing to the control group. There were no differences between intervention and control groups in the prevalence of EPDS ≥11, EPDS scores over time, or in changes in EPDS scores from pregnancy to postpartum in either the ITT or per-protocol analyses. Women in the fish oil group with previous history of depression presented a higher reduction on the EPDS score from the second to the third trimester in the fish oil comparing to the control group in the ITT analyses [−1.0 (−3.0–0.0) vs. -0.0 (−1.0–3.0), P = 0.038). These results were confirmed on the LME model (β = −3.441; 95%CI: -6.532– -0.350, P = 0.029). Conclusion: Daily supplementation of 1.8 g of n-3 PUFAs during 16 weeks did not prevent maternal depressive symptoms in a sample of Brazilian women

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality

    Multiple courses of G-CSF in patients with decompensated cirrhosis : consistent mobilization of immature cells ex pressing hepatocyte markers and exploratory clinical evaluation

    No full text
    INTRODUCTION: Bone marrow-derived cells (BMCs) include stem cells capable of self-renewal and differentiation into a variety of cell types. Administration of granulocyte colony-stimulating factor (G-CSF) induces the circulation of BMCs in the peripheral blood. A phase II prospective trial was carried out for evaluation of BMC mobilization induced by multiple courses of G-CSF in cirrhotic patients. PATIENTS AND METHODS: Fifteen patients with advanced liver cirrhosis (Child-Pugh score 656 points) were enrolled and treated with a 3-day G-CSF course, administered at 3-month intervals for a total of four courses. BMC mobilization was assessed by evaluating CD34+ve cells using flow cytometry. Expressions of multiple hepatic and stem markers were assessed on mobilized CD34+ve cells. Feasibility and safety were explored; clinical and adverse events were compared to those of a control group. Telomere length was monitored to rule out early cell aging caused by G-CSF. RESULTS: A significant increase in G-CSF-induced circulating CD34+ve cells was consistently observed, although a progressive reduction of peak values was documented from cycle I to IV (p < 0.005). Mobilized CD34+ve cells expressed both stem and multiple hepatocyte markers, including mRNA of albumin and CYP2B6 (cytochrome P2 B6). Treatment was well tolerated, with no severe adverse events and no significant telomere length shortening following G-CSF. The procedure was safe. Overall, ten patients had either improved or had stable liver function tests (such as the Child-Pugh score), whereas five worsened and died from liver-related causes. CONCLUSION: This study demonstrates that G-CSF can be safely administrated up to four times over a 1-year period in decompensated cirrhotic patients. The repeated BMC mobilization favors the circulation of stem cells coexpressing hepatic markers and mRNA of liver-related genes
    corecore