808 research outputs found

    Small gas-turbine combustor study: Fuel injector evaluation

    Get PDF
    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation of fuel injection technique and effect of fuel type on small gas turbine combustors was undertaken. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine the effect of fuel type

    Small gas turbine combustor study: Fuel injector performance in a transpiration-cooled liner

    Get PDF
    The effect of fuel injection technique on the performance of an advanced reverse flow combustor liner constructed of Lamilloy (a multilaminate transpiration type material) was determined. Performance and emission levels are documented over a range of simulated flight conditions using simplex pressure atomizing, spill return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types is obtained

    Advanced liner-cooling techniques for gas turbine combustors

    Get PDF
    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy)

    Effect of fuel injector type on performance and emissions of reverse-flow combustor

    Get PDF
    The combustion process in a reverse-flow combustor suitable for a small gas turbine engine was investigated to evaluate the effect of fuel injector type on performance and emissions. Fuel injector configurations using pressure-atomizing, spill-flow, air blast, and air-assist techniques were compared and evaluated on the basis of performance obtained in a full-scale experimental combustor operated at inlet conditions corresponding to takeoff, cruise, low power, and idle and typical of a 16:1-pressure-ratio turbine engine. Major differences in combustor performance and emissions characteristics were experienced with each injector type even though the aerodynamic configuration was common to most combustor models. Performance characteristics obtained with the various fuel injector types could not have been predicted from bench-test injector spray characteristics. The effect of the number of operating fuel injectors on performance and emissions is also presented

    Reverse-flow combustor for small gas turbines with pressure-atomizing fuel injectors

    Get PDF
    A reverse flow combustor suitable for a small gas turbine (2 to 3 kg/s mass flow) was used to evalute the effect of pressure atomizing fuel injectors on combustor performance. In these tests an experimental combustor was designed to operate with 18 simplex pressure atomizing fuel injectors at sea level takeoff conditions. To improve performance at low power conditions, fuel was redistributed so that only every other injector was operational. Combustor performance, emissions, and liner temperature were compared over a range of pressure and inlet air temperatures corresponding to simulated idle, cruise, and takeoff conditions typical of a 16 to 1 pressure ratio turbine engine

    Posterior interosseous nerve localization within the proximal forearm - a patient normalized parameter

    Get PDF
    AIM To provide a “patient-normalized” parameter in the proximal forearm. METHODS Sixty-three cadaveric upper extremities from thirty-five cadavers were studied. A muscle splitting approach was utilized to locate the posterior interosseous nerve (PIN) at the point where it emerges from beneath the supinator. The supinator was carefully incised to expose the midpoint length of the nerve as it passes into the forearm while preserving the associated fascial connections, thereby preserving the relationship of the nerve with the muscle. We measured the transepicondylar distance (TED), PIN distance in the forearm’s neutral rotation position, pronation position, supination position, and the nerve width. Two individuals performed measurements using a digital caliper with inter-observer and intra-observer blinding. The results were analyzed with the Wilcoxon-Mann-Whitney test for paired samples. RESULTS In pronation, the PIN was within two confidence intervals of 1.0 TED in 95% of cases (range 0.7-1.3 TED); in neutral, within two confidence intervals of 0.84 TED in 95% of cases (range 0.5-1.1 TED); in supination, within two confidence intervals of 0.72 TED in 95% of cases (range 0.5-0.9 TED). The mean PIN distance from the lateral epicondyle was 100% of TED in a pronated forearm, 84% in neutral, and 72% in supination. Predictive accuracy was highest in supination; in all cases the majority of specimens (90.47%-95.23%) are within 2 cm of the forearm position-specific percentage of TED. When comparing right to left sides for TEDs with the signed Wilcoxon-Mann-Whitney test for paired samples as well as a significance test (with normal distribution), the P-value was 0.0357 (significance - 0.05) indicating a significant difference between the two sides. CONCLUSION This “patient normalized” parameter localizes the PIN crossing a line drawn between the lateral epicondyle and the radial styloid. Accurate PIN localization will aid in diagnosis, injections, and surgical approaches

    Insights on the Role of Diabetes and Geographic Variation in Patients with Criticial Limb Ischaemia

    Get PDF
    AbstractBackgroundPatients with critical limb ischaemia (CLI) unsuitable for revascularisation have a high rate of amputation and mortality (30% and 25% at 1 year, respectively). Localised gene therapy using plasmid DNA encoding acidic fibroblast growth factor (NV1FGF, riferminogene pecaplasmid) has showed an increased amputation-free survival in a phase II trial. This article provides the rationale, design and baseline characteristics of CLI patients enrolled in the pivotal phase III trial (EFC6145/TAMARIS).MethodsAn international, double-blind, placebo-controlled, randomised study composed of 525 CLI patients recruited from 170 sites worldwide who were unsuitable for revascularisation and had non-healing skin lesions was carried out to evaluate the potential benefit of repeated intramuscular administration of NV1FGF. Randomisation was stratified by country and by diabetic status.ResultsThe mean age of the study cohort was 70 ± 10 years, and included 70% males and 53% diabetic patients. Fifty-four percent of the patients had previous lower-extremity revascularisation and 22% had previous minor amputation of the index leg. In 94% of the patients, the index leg had distal occlusive disease affecting arteries below the knee. Statins were prescribed for 54% of the patients, and anti-platelet drugs for 80%. Variation in region of origin resulted in only minor demographic imbalance. Similarly, while diabetic status was associated with a frequent history of coronary artery disease, it had little impact on limb haemodynamics and vascular lesions.ConclusionsClinical characteristics and vascular anatomy of CLI patients with ischaemic skin lesions who were unsuitable for revascularisation therapy show little variations by region of origin and diabetic status. The findings from this large CLI cohort will contribute to our understanding of this disease process.This study is registered with ClinicalTrials.gov, number NCT00566657
    corecore