21 research outputs found

    Circuit Optimization for Enhancing the Output Power of a Piezoelectric Energy Harvester

    Get PDF
    In this paper, a new method is proposed for improving a piezoelectric energy harvester’s output power. A piezoelectric vibration energy harvester has an inherent internal capacitance. The new approach adopts inductance to reduce the reactance of the internal capacitance and enhance the output power. To show the practicality of this method, four electrical circuits are investigated numerically and experimentally for a piezoelectric beam energy harvester: Simple Resistive Load, Inductive Load, standard AC-DC, and Inductive AC-DC circuits. An Inductive Load circuit is built by adding an inductor to a Simple Resistive Load circuit, while an Inductive AC-DC circuit is built by adding an inductor to a standard AC-DC circuit. Experimental results indicate that the Inductive Load and the Inductive AC-DC circuits avail the Simple Resistive Load and standard AC-DC circuits respectively. The inductive AC-DC circuit shows a 6.7% increase in the output power compared to the standard AC-DC circuit

    IMECE2008-68886 EXPERIMENTAL NONLINEAR VIBRATION ANALYSIS OF PIEZOELECTRICALLY ACTUATED MICROCANTILEVERS

    Get PDF
    ABSTRACT With daily growth of using microcantilevers in microelectromechanical systems, comprehensive analysis on their dynamical behavior is necessary since they are mostly utilized as the main sensing device. In this paper, the out-ofplane vibrations of the piezoelectrically actuated microcantilever are experimentally investigated. The microcantilever is covered with a piezoelectric layer on its top surface through which it can be excited by applying the voltage to the piezoelectric actuator. The nonlinear frequency response of the microcantilever is studied and shift in natural frequency due to nonlinearity is examined. By observing the subharmonics of the fundamental frequencies at 2X and 3X, it is experimentally shown that there exist cubic and quadratic nonlinearities in the microcantilever. A mathematical model based on these experimental tests is then proposed and verified. The out-of-plane measurements provide the ability to observe both transversal and torsional modes. In addition, the modes in which the microcantilever acts like a plate are observed. INTRODUCTION Microcantilevers find many applications in nanomechanical sensors/actuators and especially piezoelectrically-actuated microcantilevers have recently received considerable attention since they are capable of better actuation. The sensing/actuating operation is based on static and dynamic deflections of the microcantilevers. However, measurement of the dynamic vibrations of the microcantilever is the base sensing strategy. Therefore, a nonlinear comprehensive experimental study on the frequency response of these microcantilevers seems to be essential since in such small scale even very small excitations can provide large amplitude and consequently nonlinear vibration

    Metabolic and endocrinologic complications in beta-thalassemia major: a multicenter study in Tehran

    Get PDF
    BACKGROUND: The combination of transfusion and chelation therapy has dramatically extended the life expectancy of thalassemic patients. The main objective of this study is to determine the prevalence of prominent thalassemia complications. METHODS: Two hundred twenty patients entered the study. Physicians collected demographic and anthropometric data and the history of therapies as well as menstrual histories. Patients have been examined to determine their pubertal status. Serum levels of 25(OH) D, calcium, phosphate, iPTH were measured. Thyroid function was assessed by T3, T4 and TSH. Zinc and copper in serum were determined by flame atomic absorption spectrophotometry. Bone mineral density (BMD) measurements at lumbar and femoral regions have been done using dual x-ray absorptiometry. The dietary calcium, zinc and copper intakes were estimated by food-frequency questionnaires. RESULTS: Short stature was seen in 39.3% of our patients. Hypogonadism was seen in 22.9% of boys and 12.2% of girls. Hypoparathyroidism and primary hypothyroidism was present in 7.6% and 7.7% of the patients. About 13 % of patients had more than one endocrine complication with mean serum ferritin of 1678 ± 955 micrograms/lit. Prevalence of lumbar osteoporosis and osteopenia were 50.7% and 39.4%. Femoral osteoporosis and osteopenia were present in 10.8% and 36.9% of the patients. Lumbar BMD abnormalities were associated with duration of chelation therapy. Low serum zinc and copper was observed in 79.6% and 68% of the study population respectively. Serum zinc showed significant association with lumbar but not femoral BMD. In 37.2% of patients serum levels of 25(OH) D below 23 nmol/l were detected. CONCLUSION: High prevalence of complications among our thalassemics signifies the importance of more detailed studies along with therapeutic interventions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer

    Full text link
    Nonlinear vibrations of viscoelastic microcantilevers with a piezoelectric actuator layer on the top surface are investigated. In this work, the microcantilever follows a classical linear viscoelastic model, i.e., Kelvin-Voigt. In addition, it is assumed that the microcantilever complies with Euler-Bernoulli beam theory. The Hamilton principle is used to obtain the equations of motion for the microcantilever oscillations. Then, the Galerkin approximation is utilized for separation of time and displacement variables, thus the time function is obtained as a second order nonlinear ordinary differential equation with quadratic and cubic nonlinear terms. Nonlinearities appear in stiffness, inertia and damping terms. Using the method of multiple scales, the analytical relations for nonlinear natural frequency and amplitude of the vibration are derived. Using the obtained analytical relations, the effects of geometric factors and material properties on the free nonlinear behavior of this beam are investigated. The results are also verified by numerical analysis of the equations. © 2012 IOP Publishing Ltd
    corecore