395 research outputs found

    Is Dark Matter made up of Massive Quark Objects?

    Get PDF
    We suggest that dark matter is made up of massive quark objects that have survived from the Big Bang, representing the ground state of ``baryonic'' matter. Hence, there was no overall phase transition of the original quark matter, but only a split-up into smaller objects. We speculate that normal hadronic matter comes about through enforced phase transitions when such objects merge or collide, which also gives rise to the cosmic gamma-ray bursts.Comment: 8 pages Latex, no figures; to be published in the Proceedings of Dark '98, Heidelberg, July 199

    Gamma-Ray Bursts from Primordial Quark Objects in Space

    Get PDF
    We investigate the possibility that gamma-ray bursts originate in a concentric spherical shell with a given average redshift and find that this is indeed compatible with the data from the third BATSE (3B) catalog. It is also shown that there is enough freedom in the choice of unknown burst properties to allow even for extremely large distances to the majority of bursts. Therefore, we speculate about an early, and very energetic, origin of bursts, and suggest that they come from phase transitions in massive objects of pure quark matter, left over from the Big Bang.Comment: 11 pages, Latex, 3 postscript figures, to be publ in the Proc of the Joint Meeting of the Networks 'The Fundamental Structure of Matter' and 'Tests of the Electroweak Symmetry Breaking', Ouranoupolis, Greece, May 199

    Categorical Foundation of Quantum Mechanics and String Theory

    Full text link
    The unification of Quantum Mechanics and General Relativity remains the primary goal of Theoretical Physics, with string theory appearing as the only plausible unifying scheme. In the present work, in a search of the conceptual foundations of string theory, we analyze the relational logic developed by C. S. Peirce in the late nineteenth century. The Peircean logic has the mathematical structure of a category with the relation RijR_{ij} among two individual terms SiS_i and SjS_j, serving as an arrow (or morphism). We introduce a realization of the corresponding categorical algebra of compositions, which naturally gives rise to the fundamental quantum laws, thus indicating category theory as the foundation of Quantum Mechanics. The same relational algebra generates a number of group structures, among them WW_{\infty}. The group WW_{\infty} is embodied and realized by the matrix models, themselves closely linked with string theory. It is suggested that relational logic and in general category theory may provide a new paradigm, within which to develop modern physical theories.Comment: To appear in International Journal of Modern Physics

    A Quark-Matter Dominated Universe

    Get PDF
    We present a new scenario for the development of the Universe after the Big Bang, built on the conjecture that a vast majority of the primordial quark matter did not undergo a phase transition to normal nuclear matter, but rather split up into massive quark objects that remained stable. Hence, such primordial quark matter would make up the so-called dark matter. We discuss, mostly in qualitative terms, the consequences for galaxy formation, the origin of normal matter, the occurrence of massive black-holes in galactic centres and the cosmic gamma-ray bursts.Comment: 32 pages Latex, 3 postscipt figure

    Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    Full text link
    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005: Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes, some references added. Final version to appear in Earth, Moon, and Planet

    Cosmic Rays and Large Extra Dimensions

    Get PDF
    We have proposed that the cosmic ray spectrum "knee", the steepening of the cosmic ray spectrum at energy E \gsim 10^{15.5} eV, is due to "new physics", namely new interactions at TeV cm energies which produce particles undetected by the experimental apparatus. In this letter we examine specifically the possibility that this interaction is low scale gravity. We consider that the graviton propagates, besides the usual four dimensions, into an additional δ\delta, compactified, large dimensions and we estimate the graviton production in ppp p collisions in the high energy approximation where graviton emission is factorized. We find that the cross section for graviton production rises as fast as (s/Mf)2+δ(\sqrt{s}/M_f)^{2+\delta}, where MfM_f is the fundamental scale of gravity in 4+δ4+\delta dimensions, and that the distribution of radiating a fraction yy of the initial particle's energy into gravitational energy (which goes undetected) behaves as δyδ1\delta y^{\delta -1}. The missing energy leads to an underestimate of the true energy and generates a break in the {\sl inferred} cosmic ray spectrum (the "kne"). By fitting the cosmic ray spectrum data we deduce that the favorite values for the parameters of the theory are Mf8M_f \sim 8 TeV and δ=4\delta =4.Comment: 8 pages, 1 figur

    A Qualitative Examination of Pain Centrality Among Veterans of Iraq and Afghanistan Conflicts

    Get PDF
    Objective. Centrality of pain refers to the degree to which a patient views chronic pain as integral to his or her life or identity. The purpose of this study was to gain a richer understanding of pain centrality from the perspective of patients who live with chronic pain. Methods. Face-to-face interviews were conducted with 26 Veterans with chronic and disabling musculoskeletal pain after completing a stepped care intervention within a randomized controlled trial. Qualitative data were analyzed using an immersion/crystallization approach. We evaluated the role centrality plays in Veterans’ lives and examined whether and how their narratives differ when centrality either significantly decreases or increases after participation in a stepped care intervention for chronic pain. Results. Our data identified three emergent themes that characterized pain centrality: 1) control, 2) acceptance, and 3) preoccupation. We identified five characteristics that distinguished patients’ changes in centrality from baseline: 1) biopsychosocial viewpoint, 2) activity level, 3) pain communication, 4) participation in managing own pain, and 5) social support. Conclusions. This study highlights centrality of pain as an important construct to consider within the overall patient experience of chronic pain

    Floquet theory of neutrino oscillations in the earth

    Get PDF
    We review the Floquet theory of linear differential equations with periodic coefficients and discuss its applications to neutrino oscillations in matter of periodically varying density. In particular, we consider parametric resonance in neutrino oscillations which can occur in such media, and discuss implications for oscillations of neutrinos traversing the earth and passing through the earth's core.Comment: LaTeX, 28 pages, 8 eps figures. Contribution to the special issue of Yad. Fiz. dedicated to the memory of A.B. Migda

    I Wouldn\u27t Know Where To Start : Perspectives From Clinicians, Agency Leaders, and Autistic Adults on Improving Community Mental Health Services for Autistic Adults

    Get PDF
    Most autistic adults struggle with mental health problems, and traditional mental health services generally do not meet their needs. This study used qualitative methods to identify ways to improve community mental health services for autistic adults for treatment of their co-occurring psychiatric conditions. We conducted semistructured, open-ended interviews with 22 autistic adults with mental healthcare experience, 44 community mental health clinicians, and 11 community mental health agency leaders in the United States. The participants identified clinician-, client-, and systems-level barriers and facilitators to providing quality mental healthcare to autistic adults. Across all three stakeholder groups, most of the reported barriers involved clinicians’ limited knowledge, lack of experience, poor competence, and low confidence working with autistic adults. All three groups also discussed the disconnect between the community mental health and developmental disabilities systems, which can result in autistic adults being turned away from services when they contact the mental health division and disclose their autism diagnosis during the intake process. Further efforts are needed to train clinicians to work more effectively with autistic adults and to increase coordination between the mental health and developmental disabilities systems

    Signature of sterile species in atmospheric neutrino data at neutrino telescopes

    Full text link
    The MiniBooNE results have still not been able to comprehensively rule out the oscillation interpretation of the LSND experiment. So far the so-called short baseline experiments with energy in the MeV range and baseline of few meters have been probing the existence of sterile neutrinos. We show how signatures of these extra sterile states could be obtained in TeV energy range atmospheric neutrinos travelling distances of thousands of kilometers. Atmospheric neutrinos in the TeV range would be detected by the upcoming neutrino telescopes. Of course vacuum oscillations of these neutrinos would be very small. However, we show that resonant matter effects inside the Earth could enhance these very tiny oscillations into near-maximal transitions, which should be hard to miss. We show that imprint of sterile neutrinos could be unambiguously obtained in this high energy atmospheric neutrino event sample. Not only would neutrino telescopes tell the presence of sterile neutrinos, it should also be possible for them to distinguish between the different possible mass and mixing scenarios with additional sterile states.Comment: 26 pages, 11 figures, Version to appear in JHE
    corecore